Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract Rotations of an axion field in field space provide a natural origin for an era of kination domination, where the energy density is dominated by the kinetic term of the axion field, preceded by an early era of matter domination. Remarkably, no entropy is produced at the end of matter domination and hence these eras of matter and kination domination may occur even after Big Bang Nucleosynthesis. We derive constraints on these eras from both the cosmic microwave background and Big Bang Nucleosynthesis. We investigate how this cosmological scenario affects the spectrum of possible primordial gravitational waves and find that the spectrum features a triangular peak. We discuss how future observations of gravitational waves can probe the viable parameter space, including regions that produce axion dark matter by the kinetic misalignment mechanism or the baryon asymmetry by axiogenesis. For QCD axion dark matter produced by the kinetic misalignment mechanism, a modification to the inflationary gravitational wave spectrum occurs above 0.01 Hz and, for high values of the energy scale of inflation, the prospects for discovery are good. We briefly comment on implications for structure formation of the universe.more » « less
-
A bstract The vanishing of the Higgs quartic coupling at a high energy scale may be explained by Intermediate Scale Supersymmetry, where supersymmetry breaks at (10 9 -10 12 ) GeV. The possible range of supersymmetry breaking scales can be narrowed down by precise measurements of the top quark mass and the strong coupling constant. On the other hand, nuclear recoil experiments can probe Higgsino or sneutrino dark matter up to a mass of 10 12 GeV. We derive the correlation between the dark matter mass and precision measurements of standard model parameters, including supersymmetric threshold corrections. The dark matter mass is bounded from above as a function of the top quark mass and the strong coupling constant. The top quark mass and the strong coupling constant are bounded from above and below respectively for a given dark matter mass. We also discuss how the observed dark matter abundance can be explained by freeze-out or freeze-in during a matter-dominated era after inflation, with the inflaton condensate being dissipated by thermal effects.more » « less
-
A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy.more » « less
An official website of the United States government
