Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a concept for a double negative metamaterial (DNM)-based antenna to simultaneously enhance Wireless Power Transfer (WPT) and reduce Specific Absorption Rate (SAR) here for a network of distributed brain microimplants. The DNM copper coils are integrated in a FR-4 substrate, which has a dielectric constant of 4.3 and tangent loss (δ) of 0.025. Occupying a 2 × 2 cm2 area, the DNM structure is introduced into our target wireless brain-machine interface (BMI) system operating at 915 MHz. Preliminary HFSS simulations show it provides 2 dB WPT enhancement and a 20% SAR reduction. We believe the work has the potential to address the WPT/ SAR co-optimization challenges for biomedical implants in general.more » « lessFree, publicly-accessible full text available January 7, 2026
-
Wireless sub-mm sized distributed brain implants have been proposed as the next frontier of Brain-Machine Interface (BMI) design to achieve untethered, high-density neural recording and stimulation. Simultaneously improving the wireless power transfer (WPT) efficiency and reducing the specific absorption rate (SAR) will be crucial for its clinical success. Towards these goals, we present an EM simulation method, a lumped equivalent circuit model, and a theoretical analysis to accurately predict the power delivered to the recording/ stimulating nodes, as well as the power dissipated in biological tissues and all other lossy elements within the system. This comprehensive framework also explains how increasing the distance between the transmit coil and the scalp can beneficially reduce the SAR without undermining the WPT efficiency. This work presents a rigorous prediction technique for transmission loss and tissue heating towards performance optimization.more » « less
-
null (Ed.)Composition is one of the most important properties of differential privacy (DP), as it allows algorithm designers to build complex private algorithms from DP primitives. We consider precise composition bounds of the overall privacy loss for exponential mechanisms, one of the fundamental classes of mechanisms in DP. We give explicit formulations of the optimal privacy loss for both the adaptive and non-adaptive settings. For the non-adaptive setting in which each mechanism has the same privacy parameter, we give an efficiently computable formulation of the optimal privacy loss. Furthermore, we show that there is a difference in the privacy loss when the exponential mechanism is chosen adaptively versus non-adaptively. To our knowledge, it was previously unknown whether such a gap existed for any DP mechanisms with fixed privacy parameters, and we demonstrate the gap for a widely used class of mechanism in a natural setting. We then improve upon the best previously known upper bounds for adaptive composition of exponential mechanisms with efficiently computable formulations and show the improvement.more » « less
-
We show variants of spectral sparsification routines can preserve the total spanning tree counts of graphs, which by Kirchhoff's matrix-tree theorem, is equivalent to determinant of a graph Laplacian minor, or equivalently, of any SDDM matrix. Our analyses utilizes this combinatorial connection to bridge between statistical leverage scores / effective resistances and the analysis of random graphs by [Janson, Combinatorics, Probability and Computing `94]. This leads to a routine that in quadratic time, sparsifies a graph down to about $$n^{1.5}$$ edges in ways that preserve both the determinant and the distribution of spanning trees (provided the sparsified graph is viewed as a random object). Extending this algorithm to work with Schur complements and approximate Choleksy factorizations leads to algorithms for counting and sampling spanning trees which are nearly optimal for dense graphs. We give an algorithm that computes a $$(1 \pm \delta)$$ approximation to the determinant of any SDDM matrix with constant probability in about $$n^2 \delta^{-2}$$ time. This is the first routine for graphs that outperforms general-purpose routines for computing determinants of arbitrary matrices. We also give an algorithm that generates in about $$n^2 \delta^{-2}$$ time a spanning tree of a weighted undirected graph from a distribution with total variation distance of $$\delta$$ from the $$w$$-uniform distribution .more » « less
-
We present an algorithm that, with high probability, generates a random spanning tree from an edge-weighted undirected graph in \Otil(n^{5/3 }m^{1/3}) time\footnote{The \Otil(\cdot) notation hides \poly(\log n) factors}. The tree is sampled from a distribution where the probability of each tree is proportional to the product of its edge weights. This improves upon the previous best algorithm due to Colbourn et al. that runs in matrix multiplication time, O(n^\omega). For the special case of unweighted graphs, this improves upon the best previously known running time of \tilde{O}(\min\{n^{\omega},m\sqrt{n},m^{4/3}\}) for m >> n^{7/4} (Colbourn et al. '96, Kelner-Madry '09, Madry et al. '15). The effective resistance metric is essential to our algorithm, as in the work of Madry et al., but we eschew determinant-based and random walk-based techniques used by previous algorithms. Instead, our algorithm is based on Gaussian elimination, and the fact that effective resistance is preserved in the graph resulting from eliminating a subset of vertices (called a Schur complement). As part of our algorithm, we show how to compute \eps-approximate effective resistances for a set SS of vertex pairs via approximate Schur complements in \Otil(m+(n + |S|)\eps^{-2}) time, without using the Johnson-Lindenstrauss lemma which requires \Otil( \min\{(m + |S|)\eps^{-2}, m+n\eps^{-4} +|S|\eps^{-2}\}) time. We combine this approximation procedure with an error correction procedure for handing edges where our estimate isn't sufficiently accurate.more » « less
An official website of the United States government

Full Text Available