- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dwivedi, Ravindra (2)
-
Abramson, Nathan (1)
-
Adair, E Carol (1)
-
Barron-Gafford, Greg (1)
-
Chorover, Jon (1)
-
Classen, Aimee T (1)
-
Eastoe, Christopher (1)
-
Ferre, Paul A. (1)
-
Kincaid, Dustin W (1)
-
Knowles, John F. (1)
-
McIntosh, Jennifer (1)
-
Meixner, Thomas (1)
-
Minor, Rebecca (1)
-
Musselman, Keith N (1)
-
Perdrial, Julia N (1)
-
Schroth, Andrew W (1)
-
Seybold, Erin C (1)
-
Stanley, Michael (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Winters in snow-covered regions have warmed, likely shifting the timing and magnitude of nutrient export, leading to unquantified changes in water quality. Intermittent, seasonal, and permanent snow covers more than half of the global land surface. Warming has reduced the cold conditions that limit winter runoff and nutrient transport, while cold season snowmelt, the amount of winter precipitation falling as rain, and rain-on-snow have increased. We used existing geospatial datasets (rain-on-snow frequency overlain on nitrogen and phosphorous inventories) to identify areas of the contiguous United States (US) where water quality could be threatened by this change. Next, to illustrate the potential export impacts of these events, we examined flow and turbidity data from a large regional rain-on-snow event in the United States’ largest river basin, the Mississippi River Basin. We show that rain-on-snow, a major flood-generating mechanism for large areas of the globe (Berghuijs et al 2019 Water Resour. Res. 55 4582–93; Berghuijs et al 2016 Geophys. Res. Lett. 43 4382–90), affects 53% of the contiguous US and puts 50% of US nitrogen and phosphorus pools (43% of the contiguous US) at risk of export to groundwater and surface water. Further, the 2019 rain-on-snow event in the Mississippi River Basin demonstrates that these events could have large, cascading impacts on winter nutrient transport. We suggest that the assumption of low wintertime discharge and nutrient transport in historically snow-covered regions no longer holds. Critically, however, we lack sufficient data to accurately measure and predict these episodic and potentially large wintertime nutrient export events at regional to continental scales.more » « less
-
Dwivedi, Ravindra; Eastoe, Christopher; Knowles, John F.; McIntosh, Jennifer; Meixner, Thomas; Ferre, Paul A.; Minor, Rebecca; Barron-Gafford, Greg; Abramson, Nathan; Stanley, Michael; et al (, Frontiers in Water)Current understanding of the dynamic and slow flow paths that support streamflow in mountain headwater catchments is inhibited by the lack of long-term hydrogeochemical data and the frequent use of short residence time age tracers. To address this, the current study combined the traditional mean transit time and the state-of-the-art fraction of young water ( F yw ) metrics with stable water isotopes and tritium tracers to characterize the dynamic and slow flow paths at Marshall Gulch, a sub-humid headwater catchment in the Santa Catalina Mountains, Arizona, USA. The results show that F yw varied significantly with period when using sinusoidal curve fitting methods (e.g., iteratively re-weighted least squares or IRLS), but not when using the transit time distribution (TTD)-based method. Therefore, F yw estimates from TTD-based methods may be particularly useful for intercomparison of dynamic flow behavior between catchments. However, the utility of 3 H to determine F yw in deeper groundwater was limited due to both data quality and inconsistent seasonal cyclicity of the precipitation 3 H time series data. Although a Gamma-type TTD was appropriate to characterize deep groundwater, there were large uncertainties in the estimated Gamma TTD shape parameter arising from the short record length of 3 H in deep groundwater. This work demonstrates how co-application of multiple metrics and tracers can yield a more complete understanding of the dynamic and slow flow paths and observable deep groundwater storage volumes that contribute to streamflow in mountain headwater catchments.more » « less
An official website of the United States government
