Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 19, 2026
- 
            Abstract We introduce a groundbreaking proof-of-concept for a novel glucose monitoring transducing mechanism, marking the first demonstration of a spore-forming microbial whole-cell sensing platform. The approach uses selective and sensitive germination ofBacillus subtilisspores in response to glucose in potassium-rich bodily fluids such as sweat. As the rate of germination and the number of metabolically active germinating cells are directly proportional to glucose concentration, the electrogenic activity of these cells—manifested as electricity—serves as a self-powered transducing signal for glucose detection. Within a microengineered, paper-based microbial fuel cell (MFC), these electrical power outputs are measurable and can be visually displayed through a compact interface, providing real-time alerts. The dormant spores extend shelf-life, and the self-replicating bacteria ensure robustness. The MFC demonstrated a remarkable sensitivity of 2.246 µW·(log mM)−1·cm−2to glucose concentrations ranging from 0.2 to 10 mM, with a notably lower limit of detection at ~0.07 mM. The sensor exhibited exceptional selectivity, accurately detecting glucose even in the presence of various interferents. Comparative analyses revealed that, unlike conventional enzymatic biosensors whose performance degrades significantly through time even when inactive, the spore-based MFC is stable for extended periods and promptly regains functionality when needed. This preliminary investigation indicates that the spore-forming microbial whole-cell sensing strategy holds considerable promise for efficient diabetes management and can be extended toward noninvasive wearable monitoring, overcoming critical challenges of current technologies and paving the way for advanced biosensing applications.more » « less
- 
            This study unveils a pioneering yet straightforward approach to creating a moist-electric generator, using paper as the primary substrate and integrating bacterial endospores within it. The distribution of these endospores is meticulously regulated by the paper's inherent capillary action. The functional groups present on the endospores enhance moisture absorption and facilitate ion dissociation, resulting in a pronounced potential gradient driven by the variation in water content and endospore concentration. To augment water capture efficiency, a paper-based Janus layer combining hydrophobic and hydrophilic properties is applied atop the paper-based moist-electric generator. This dual-sided membrane excels in moisture condensation from the atmosphere and ensures unidirectional water transport to the generator, thus ensuring substantial electrical output even under low relative humidity conditions. This research not only addresses the challenges of power generation in wearable paper-based devices but also heralds new pathways for the development of autonomous, cost-effective, and eco-friendly energy solutions for wearable technologies.more » « less
- 
            Bioelectrochemical technologies have attracted significant scientific interest because the effective bacterial electron exchange with external electrodes can provide a sustainable solution that joins environmental remediation and energy recovery. Multispecies electroactive bacterial biofilms are catalysts that will drive the operation of bioelectrochemical devices. Unfortunately, there is a lack of understanding of key mechanisms determining their electron-generating capabilities and syntrophic relations within microbial communities in biofilms. This is because there are no universally standardized models for simple, rapid, reliable, and cost-effective fabrication and characterization of electroactive multispecies biofilms. The heterogeneous and long-term nature of biofilm formation has hampered the development of those models. This work develops novel biofabrication and analysis platforms by creating innovative, paper-based 3-D systems that accurately recapitulate the structure, function, and physiology of living multispecies biofilms. Multiple layers of paper containing bacterial cells were stacked to simulate different layered 3-D biofilm models with defined cellular compositions and microenvironments. Overall bacterial electrogenic capabilities through the biofilm structures were characterized by thoroughly monitoring collective electron flows through different external resistors. Changes in the type of species and order of stacking created biofilm modeling which allowed for the study of their electrogenic performance via variation in electron flow rate output. Furthermore, multi-laminate structures allowed for straightforward de-stacking and layer-by-layer separation for analyses of pH distribution and cellular viability. Our multi-laminate structures provide a new strategy for (i) controlling the biofilm geometry of 3-D bacterial cultures, (ii) monitoring the microbial electoral properties, and (iii) constructing an artificial biofilm layer by layer.more » « less
- 
            The rapid proliferation of the Internet of Things (IoT) necessitates compact, sustainable, and autonomous energy sources for distributed electronic devices. Microbial fuel cells (MFCs) offer an eco‐friendly alternative by converting organic matter into electrical energy using living micro‐organisms. However, their integration into microsystems faces significant challenges, including incompatibility with microfabrication, fragile anode materials, low electrical conductivity, and compromised microbial viability. Here, this study introduces a microscale biobattery platform integrating laser powder bed fusion‐fabricated 316L stainless steel anodes with resilient, spore‐formingBacillus subtilisbiocatalysts. The 3D‐printed gyroid scaffolds provide high surface‐to‐volume ratios, submillimeter porosity, and tunable roughness, enhancing microbial colonization and electron transfer. The stainless steel ensures mechanical robustness, chemical stability, and superior conductivity.Bacillus subtilisspores withstand harsh conditions, enabling prolonged storage and rapid, on‐demand activation. The biobattery produces 130 μW of power, exceeding conventional microscale MFCs, with exceptional reuse stability. A stack of six biobatteries achieves nearly 1 mW, successfully powering a 3.2‐inch thin‐film transistor liquid crystal display via capacitor‐assisted energy buffering, demonstrating practical applicability. This scalable, biologically resilient, and fabrication‐compatible solution advances autonomous electronic systems for IoT applications.more » « less
- 
            An intimate and direct interface between inorganic electronics and living organisms will revolutionize the next generation of bioelectronics by bridging the signal and material gap between these two different fields. In this work, a redox-active microbial electrode is constructed as the novel interface by simultaneously 3-D printing and electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in a liquid containing electrochemically active bacteria. A custom-made 3-D printer with a concurrent electrochemical control allows a scalable, template-free deposition of electrochemically active organic electrodes in a single printing. Electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) acts as redox-active bridges by exploiting extracellularly transferred electrons generated from the bacterial respiration, constructing a seamless contact between the biological processes and the external abiotic systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available