skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biofabrication and characterization of multispecies electroactive biofilms in stratified paper-based scaffolds
Bioelectrochemical technologies have attracted significant scientific interest because the effective bacterial electron exchange with external electrodes can provide a sustainable solution that joins environmental remediation and energy recovery. Multispecies electroactive bacterial biofilms are catalysts that will drive the operation of bioelectrochemical devices. Unfortunately, there is a lack of understanding of key mechanisms determining their electron-generating capabilities and syntrophic relations within microbial communities in biofilms. This is because there are no universally standardized models for simple, rapid, reliable, and cost-effective fabrication and characterization of electroactive multispecies biofilms. The heterogeneous and long-term nature of biofilm formation has hampered the development of those models. This work develops novel biofabrication and analysis platforms by creating innovative, paper-based 3-D systems that accurately recapitulate the structure, function, and physiology of living multispecies biofilms. Multiple layers of paper containing bacterial cells were stacked to simulate different layered 3-D biofilm models with defined cellular compositions and microenvironments. Overall bacterial electrogenic capabilities through the biofilm structures were characterized by thoroughly monitoring collective electron flows through different external resistors. Changes in the type of species and order of stacking created biofilm modeling which allowed for the study of their electrogenic performance via variation in electron flow rate output. Furthermore, multi-laminate structures allowed for straightforward de-stacking and layer-by-layer separation for analyses of pH distribution and cellular viability. Our multi-laminate structures provide a new strategy for (i) controlling the biofilm geometry of 3-D bacterial cultures, (ii) monitoring the microbial electoral properties, and (iii) constructing an artificial biofilm layer by layer.  more » « less
Award ID(s):
2100757
PAR ID:
10405083
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Analyst
Volume:
147
Issue:
18
ISSN:
0003-2654
Page Range / eLocation ID:
4082 to 4091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For the first time, we report a low-cost, disposable fully-papertronic screening platform for rapid screening and identification of electroactive microorganisms. This novel papertronic device is capable of simultaneous characterizing the electrogenicity of 10’s of the newly discovered, genetically engineered, bacteria. This work explored an exciting range of possibilities with the goal of fusing microbial fuel cell technology with ‘papertronics,’ the emerging field of paper-based electronics. Spatially distinct 64 sensing units of the array were constructed by patterning hydrophilic anodic reservoirs in paper with hydrophobic wax boundaries and utilizing 3-D multi-laminate paper structures. Full integration of a high-performance microbial sensor on paper can be achieved by improving the microbial electron exchange with the electrodes in an engineered conductive paper reservoir and reducing cathodic overpotential by using a solid electron acceptor on paper. Furthermore, the intrinsic capillary force of the paper and the increased capacity from the engineered reservoir allowed for rapid adsorption of the bacterial sample and promote immediate microbial cell attachment to the electrode, leading to instant power generation with even a small amount of the liquid. 
    more » « less
  2. This review presents current knowledge on applying bioelectrochemical sensors to monitor soil fertility through microbial activity and discusses future perspectives. Soil microbial activity is considered an indicator of soil fertility due to the interconnected relationship between soil nutrient composition, microbiome, and plant productivity. Similarities between soils and bioelectrochemical reactors provide the foundation for the design of bioelectrochemical sensors driven by microorganisms enriched as electrochemically active biofilms on polarized electrodes. The biofilm can exchange electrons with electrodes and metabolites with the nearby microbiome to generate electrochemical signals that inform of microbiome functions and nutrient bioavailability. Such mechanisms can be used as a bioelectrochemical sensor for proxy monitoring of soil fertility to address the need for real-time monitoring of soils. 
    more » « less
  3. Barr, Jeremy J. (Ed.)
    Numerous ecological interactions among microbes—for example, competition for space and resources, or interaction among phages and their bacterial hosts—are likely to occur simultaneously in multispecies biofilm communities. While biofilms formed by just a single species occur, multispecies biofilms are thought to be more typical of microbial communities in the natural environment. Previous work has shown that multispecies biofilms can increase, decrease, or have no measurable impact on phage exposure of a host bacterium living alongside another species that the phages cannot target. The reasons underlying this variability are not well understood, and how phage–host encounters change within multispecies biofilms remains mostly unexplored at the cellular spatial scale. Here, we study how the cellular scale architecture of model 2-species biofilms impacts cell–cell and cell–phage interactions controlling larger scale population and community dynamics. Our system consists of dual culture biofilms ofEscherichia coliandVibrio choleraeunder exposure to T7 phages, which we study using microfluidic culture, high-resolution confocal microscopy imaging, and detailed image analysis. As shown previously, sufficiently mature biofilms ofE.colican protect themselves from phage exposure via their curli matrix. Before this stage of biofilm structural maturity,E.coliis highly susceptible to phages; however, we show that these bacteria can gain lasting protection against phage exposure if they have become embedded in the bottom layers of highly packed groups ofV.choleraein co-culture. This protection, in turn, is dependent on the cell packing architecture controlled byV.choleraebiofilm matrix secretion. In this manner,E.colicells that are otherwise susceptible to phage-mediated killing can survive phage exposure in the absence of de novo resistance evolution. While co-culture biofilm formation withV.choleraecan confer phage protection toE.coli, it comes at the cost of competing withV.choleraeand a disruption of normal curli-mediated protection forE.colieven in dual species biofilms grown over long time scales. This work highlights the critical importance of studying multispecies biofilm architecture and its influence on the community dynamics of bacteria and phages. 
    more » « less
  4. Kline, Kimberly A (Ed.)
    ABSTRACT Biofilms provide individual bacteria with many advantages, yet dense cellular proliferation can also create intrinsic metabolic challenges including excessive acidification. Because such pH stress can be masked in buffered laboratory media—such as MSgg commonly used to studyBacillus subtilisbiofilms—it is not always clear how such biofilms cope with minimally buffered natural environments. Here, we report howB. subtilisbiofilms overcome this intrinsic metabolic challenge through an active pH regulation mechanism. Specifically, we find that these biofilms can modulate their extracellular pH to the preferred neutrophile range, even when starting from acidic and alkaline initial conditions, while planktonic cells cannot. We associate this behavior with dynamic interplay between acetate and acetoin biosynthesis and show that this mechanism is required to buffer against biofilm acidification. Furthermore, we find that buffering-deficient biofilms exhibit dysregulated biofilm development when grown in minimally buffered conditions. Our findings reveal an active pH regulation mechanism inB. subtilisbiofilms that could lead to new targets to control unwanted biofilm growth.IMPORTANCEpH is known to influence microbial growth and community dynamics in multiple bacterial species and environmental contexts. Furthermore, in many bacterial species, rapid cellular proliferation demands the use of overflow metabolism, which can often result in excessive acidification. However, in the case of bacterial communities known as biofilms, these acidification challenges can be masked when buffered laboratory media are employed to stabilize the pH environment for optimal growth. Our study reveals thatB. subtilisbiofilms use an active pH regulation mechanism to mitigate both growth-associated acidification and external pH challenges. This discovery provides new opportunities for understanding microbial communities and could lead to new methods for controlling biofilm growth outside of buffered laboratory conditions. 
    more » « less
  5. Osiński, Marek; Kanaras, Antonios G. (Ed.)
    Periodontal diseases are prevalent worldwide and are linked to numerous other health conditions due to dysbiosis and chronic inflammatory state. Most periodontal diseases are caused by pathogenic bacteria that colonize dental tissues in the form of biofilm. Eradication of bacterial biofilms can be difficult to achieve due to the complex architecture of the teeth and gums which complicates the removal. Orthodontic wires and dental devices introduce additional hurdles to the adequate removal of biofilms by traditional methods since mechanical disruption via direct contact with toothbrush bristles, floss, and abrasive toothpaste is limited. Magnetically activated nanoparticles (NPs), specifically iron oxide nanoparticles (IONPs) that can be functionalized as antimicrobial particles and remotely controlled by magnetic fields, are of interest for oral biofilm eradication. We present data in multi-species bacterial cultures, established biofilms, human gingival keratinocytes, and human gingival fibroblast cells alone and in the presence of multispecies biofilm co-cultures to determine the safest, most efficacious IONP size ranges and treatment concentrations of active magnetic NPs for removal of dental biofilms. We report enhanced efficacy for IONPs coated with alginate vs. dextran, and small sizes (~8 nm vs. >20 nm in size) appear to exhibit enhanced antimicrobial efficacy. Human gingival keratinocyte (TIGK) cells in co-culture with treated and untreated multispecies biofilms in an in-vitro periodontitis model also exhibited a trend of reduced inflammatory markers in wells with IONP-treated biofilms. 
    more » « less