Magnetic fields likely play an important role in the formation of young protostars. Multiscale and multiwavelength dust polarization observations can reveal the inferred magnetic field from scales of the cloud to core to protostar. We present continuum polarization observations of the young protostellar triple system IRAS 16293-2422 at 89
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract μ m using HAWC+ on SOFIA. The inferred magnetic field is very uniform with an average field angle of 89° ± 23° (E of N), which is different from the ∼170° field morphology seen at 850μ m at larger scales (≳2000 au) with JCMT POL-2 and at 1.3 mm on smaller scales (≲300 au) with Atacama Large Millimeter/submillimeter Array. The HAWC+ magnetic field direction is aligned with the known E-W outflow. This alignment difference suggests that the shorter wavelength HAWC+ data is tracing the magnetic field associated with warmer dust likely from the outflow cavity, whereas the longer wavelength data are tracing the bulk magnetic field from cooler dust. Also, we show in this source the dust emission peak is strongly affected by the observing wavelength. The dust continuum peaks closer to source B (northern source) at shorter wavelengths and progressively moves toward the southern A source with increasing wavelength (from 22 to 850μ m).Free, publicly-accessible full text available June 1, 2025 -
Abstract Young protostellar binary systems, with expected ages less than ∼105yr, are little modified since birth, providing key clues to binary formation and evolution. We present a first look at the young, Class 0 binary protostellar system R CrA IRAS 32 from the Early Planet Formation in Embedded Disks ALMA large program, which observed the system in the 1.3 mm continuum emission,12CO (2−1),13CO (2−1), C18O (2−1), SO (65−54), and nine other molecular lines that trace disks, envelopes, shocks, and outflows. With a continuum resolution of ∼0.″03 (∼5 au, at a distance of 150 pc), we characterize the newly discovered binary system with a separation of 207 au, their circumstellar disks, and a circumbinary disklike structure. The circumstellar disk radii are 26.9 ± 0.3 and 22.8 ± 0.3 au for sources A and B, respectively, and their circumstellar disk dust masses are estimated as 22.5 ± 1.1
M ⊕and 12.4 ± 0.6M ⊕, respectively. The circumstellar disks and the circumbinary structure have well-aligned position angles and inclinations, indicating formation in a smooth, ordered process such as disk fragmentation. In addition, the circumstellar disks have a near/far-side asymmetry in the continuum emission, suggesting that the dust has yet to settle into a thin layer near the midplane. Spectral analysis of CO isotopologues reveals outflows that originate from both of the sources and possibly from the circumbinary disklike structure. Furthermore, we detect Keplerian rotation in the13CO isotopologues toward both circumstellar disks and likely Keplerian rotation in the circumbinary structure; the latter suggests that it is probably a circumbinary disk.Free, publicly-accessible full text available April 24, 2025 -
Abstract We present observations of the Class 0 protostar IRAS 16544–1604 in CB 68 from the “Early Planet Formation in Embedded Disks (eDisk)” ALMA Large program. The ALMA observations target continuum and lines at 1.3 mm with an angular resolution of ∼5 au. The continuum image reveals a dusty protostellar disk with a radius of ∼30 au seen close to edge-on and asymmetric structures along both the major and minor axes. While the asymmetry along the minor axis can be interpreted as the effect of the dust flaring, the asymmetry along the major axis comes from a real nonaxisymmetric structure. The C18O image cubes clearly show the gas in the disk that follows a Keplerian rotation pattern around a ∼0.14
M ⊙central protostar. Furthermore, there are ∼1500 au scale streamer-like features of gas connecting from northeast, north–northwest, and northwest to the disk, as well as the bending outflow as seen in the12CO (2–1) emission. At the apparent landing point of the NE streamer, there is SO (65–54) and SiO (5–4) emission detected. The spatial and velocity structure of the NE streamer can be interpreted as a free-falling gas with a conserved specific angular momentum, and the detection of the SO and SiO emission at the tip of the streamer implies the presence of accretion shocks. Our eDisk observations have unveiled that the Class 0 protostar in CB 68 has a Keplerian-rotating disk with a flaring and nonaxisymmetric structure associated with accretion streamers and outflows. -
Abstract We present an overview of the Large Program, “Early Planet Formation in Embedded Disks (eDisk),” conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The ubiquitous detections of substructures, particularly rings and gaps, in protoplanetary disks around T Tauri stars raise the possibility that at least some planet formation may have already started during the embedded stages of star formation. In order to address exactly how and when planet formation is initiated, the program focuses on searching for substructures in disks around 12 Class 0 and 7 Class I protostars in nearby (<200 pc) star-forming regions through 1.3 mm continuum observations at a resolution of ∼7 au (0.″04). The initial results show that the continuum emission, mostly arising from dust disks around the sample protostars, has relatively few distinctive substructures, such as rings and spirals, in marked contrast to Class II disks. The dramatic difference may suggest that substructures quickly develop in disks when the systems evolve from protostars to Class II sources, or alternatively that high optical depth of the continuum emission could obscure internal structures. Kinematic information obtained through CO isotopologue lines and other lines reveals the presence of Keplerian disks around protostars, providing us with crucial physical parameters, in particular, the dynamical mass of the central protostars. We describe the background of the eDisk program, the sample selection and their ALMA observations, and the data reduction, and we also highlight representative first-look results.more » « less
-
Abstract While dust disks around optically visible, Class II protostars are found to be vertically thin, when and how dust settles to the midplane are unclear. As part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks, we analyze the edge-on, embedded, Class I protostar IRAS 04302+2247, also nicknamed the “Butterfly Star.” With a resolution of 0.″05 (8 au), the 1.3 mm continuum shows an asymmetry along the minor axis that is evidence of an optically thick and geometrically thick disk viewed nearly edge-on. There is no evidence of rings and gaps, which could be due to the lack of radial substructure or the highly inclined and optically thick view. With 0.″1 (16 au) resolution, we resolve the 2D snow surfaces, i.e., the boundary region between freeze-out and sublimation, for12CO
J = 2–1,13COJ = 2–1, C18OJ = 2–1,H 2COJ = 30,3–20,2, and SOJ = 65–54, and constrain the CO midplane snow line to ∼130 au. We find Keplerian rotation around a protostar of 1.6 ± 0.4M ⊙using C18O. Through forward ray-tracing using RADMC-3D, we find that the dust scale height is ∼6 au at a radius of 100 au from the central star and is comparable to the gas pressure scale height. The results suggest that the dust of this Class I source has yet to vertically settle significantly.