skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Enquist, Brian J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract AimSpecies occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses. InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases(i.e. cleaning vs. testing)that encompass different testBlocksgrouping differenttestTypes(e.g.environmental outlier detection), which may use differenttestMethods(e.g.Rosner test, jacknife,etc.). Four differenttestBlockscharacterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed. Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application. 
    more » « less
  2. Abstract Trees are pivotal to global biodiversity and nature’s contributions to people, yet accelerating global changes threaten global tree diversity, making accurate species extinction risk assessments necessary. To identify species that require expert-based re-evaluation, we assess exposure to change in six anthropogenic threats over the last two decades for 32,090 tree species. We estimated that over half (54.2%) of the assessed species have been exposed to increasing threats. Only 8.7% of these species are considered threatened by the IUCN Red List, whereas they include more than half of the Data Deficient species (57.8%). These findings suggest a substantial underestimation of threats and associated extinction risk for tree species in current assessments. We also map hotspots of tree species exposed to rapidly changing threats around the world. Our data-driven approach can strengthen the efforts going into expert-based IUCN Red List assessments by facilitating prioritization among species for re-evaluation, allowing for more efficient conservation efforts. 
    more » « less
  3. Romanach, Stephanie S. (Ed.)
    Massive biological databases of species occurrences, or georeferenced locations where a species has been observed, are essential inputs for modeling present and future species distributions. Location accuracy is often assessed by determining whether the observation geocoordinates fall within the boundaries of the declared political divisions. This otherwise simple validation is complicated by the difficulty of matching political division names to the correct geospatial object. Spelling errors, abbreviations, alternative codes, and synonyms in multiple languages present daunting name disambiguation challenges. The inability to resolve political division names reduces usable data, and analysis of erroneous observations can lead to flawed results. Here, we present the Geographic Name Resolution Service (GNRS), an application for correcting, standardizing, and indexing world political division names. The GNRS resolves political division names against a reference database that combines names and codes from GeoNames with geospatial object identifiers from the Global Administrative Areas Database (GADM). In a trial resolution of political division names extracted from >270 million species occurrences, only 1.9%, representing just 6% of occurrences, matched exactly to GADM political divisions in their original form. The GNRS was able to resolve, completely or in part, 92% of the remaining 378,568 political division names, or 86% of the full biodiversity occurrence dataset. In assessing geocoordinate accuracy for >239 million species occurrences, resolution of political divisions by the GNRS enabled the detection of an order of magnitude more errors and an order of magnitude more error-free occurrences. By providing a novel solution to a significant data quality impediment, the GNRS liberates a tremendous amount of biodiversity data for quantitative biodiversity research. The GNRS runs as a web service and is accessible via an API, an R package, and a web-based graphical user interface. Its modular architecture is easily integrated into existing data validation workflows. 
    more » « less
  4. Abstract Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. null (Ed.)
    Predictions from species distribution models (SDMs) are commonly used in support of environmental decision-making to explore potential impacts of climate change on biodiversity. However, because future climates are likely to differ from current climates, there has been ongoing interest in understanding the ability of SDMs to predict species responses under novel conditions (i.e., model transferability). Here, we explore the spatial and environmental limits to extrapolation in SDMs using forest inventory data from 11 model algorithms for 108 tree species across the western United States. Algorithms performed well in predicting occurrence for plots that occurred in the same geographic region in which they were fitted. However, a substantial portion of models performed worse than random when predicting for geographic regions in which algorithms were not fitted. Our results suggest that for transfers in geographic space, no specific algorithm was better than another as there were no significant differences in predictive performance across algorithms. There were significant differences in predictive performance for algorithms transferred in environmental space with GAM performing best. However, the predictive performance of GAM declined steeply with increasing extrapolation in environmental space relative to other algorithms. The results of this study suggest that SDMs may be limited in their ability to predict species ranges beyond the environmental data used for model fitting. When predicting climate-driven range shifts, extrapolation may also not reflect important biotic and abiotic drivers of species ranges, and thus further misrepresent the realized shift in range. Future studies investigating transferability of process based SDMs or relationships between geodiversity and biodiversity may hold promise. 
    more » « less