skip to main content


Search for: All records

Creators/Authors contains: "Ernst, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Purpose: To improve the image reconstruction for prospective motion correction (PMC) of simultaneous multislice (SMS) EPI of the brain, an update of receiver phase and resampling of coil sensitivities are proposed and evaluated. Methods: A camera-based system was used to track head motion (3 translations and 3 rotations) and dynamically update the scan position and orientation. We derived the change in receiver phase associated with a shifted field of view (FOV) and applied it in real-time to each k-space line of the EPI readout trains. Second, for the SMS reconstruction, we adapted resampled coil sensitivity profiles reflecting the movement of slices. Single-shot gradient-echo SMS-EPI scans were performed in phantoms and human subjects for validation. Results: Brain SMS-EPI scans in the presence of motion withPMCand no phase correction for scan plane shift showed noticeable artifacts. These artifacts were visually and quantitatively attenuated when corrections were enabled. Correcting misaligned coil sensitivity maps improved the temporal SNR (tSNR) of time series by 24% (p=0.0007) for scans with large movements (up to ∼35mm and 30◦). Correcting the receiver phase improved the tSNR of a scan with minimal head movement by 50% from 50 to 75 for a United Kingdom biobank protocol. Conclusion: Reconstruction-induced motion artifacts in single-shot SMS-EPI scans acquired with PMC can be removed by dynamically adjusting the receiver phase of each line across EPI readout trains and updating coil sensitivity profiles during reconstruction. The method may be a valuable tool for SMS-EPI scans in the presence of subject motion. 
    more » « less
  2. Image reconstructions involving neural networks (NNs) are generally non-iterative and computationally efficient. However, without analytical expression describing the reconstruction process, the computation of noise propagation becomes difficult. Automated differentiation allows rapid computation of derivatives without an analytical expression. In this work, the feasibility of computing noise propagation with automated differentiation was investigated. The noise propagation of image reconstruction by the End-to-end variational-neural-network was estimated using automated differentiation and compared with Monte-Carlo simulation. The root-mean-square error (RMSE) map showed great agreement between automated differentiation and Monte-Carlo simulation over a wide range of SNRs. 
    more » « less
  3. We introduce an approximation and resulting method called MGRAPPA to allow high speed MRI scans robust to subject motion using prospective motion correction and GRAPPA. In experiments on both simulated data and in-vivo data, we observe high accuracy and robustness to subject movement in L2 (Frobenius) norm error including a 41% improvement in the in-vivo experiment. 
    more » « less
  4. Buchner, David A. (Ed.)
    Several studies have found associations between higher pancreatic fat content and adverse health outcomes, such as diabetes and the metabolic syndrome, but investigations into the genetic contributions to pancreatic fat are limited. This genome-wide association study, comprised of 804 participants with MRI-assessed pancreatic fat measurements, was conducted in the ethnically diverse Multiethnic Cohort-Adiposity Phenotype Study (MEC-APS). Two genetic variants reaching genome-wide significance, rs73449607 on chromosome 13q21.2 (Beta = -0.67, P = 4.50x10 -8 ) and rs7996760 on chromosome 6q14 (Beta = -0.90, P = 4.91x10 -8 ) were associated with percent pancreatic fat on the log scale. Rs73449607 was most common in the African American population (13%) and rs79967607 was most common in the European American population (6%). Rs73449607 was also associated with lower risk of type 2 diabetes (OR = 0.95, 95% CI = 0.89–1.00, P = 0.047) in the Population Architecture Genomics and Epidemiology (PAGE) Study and the DIAbetes Genetics Replication and Meta-analysis (DIAGRAM), which included substantial numbers of non-European ancestry participants (53,102 cases and 193,679 controls). Rs73449607 is located in an intergenic region between GSX1 and PLUTO , and rs79967607 is in intron 1 of EPM2A . PLUTO , a lncRNA , regulates transcription of an adjacent gene, PDX1 , that controls beta-cell function in the mature pancreas, and EPM2A encodes the protein laforin, which plays a critical role in regulating glycogen production. If validated, these variants may suggest a genetic component for pancreatic fat and a common etiologic link between pancreatic fat and type 2 diabetes. 
    more » « less
  5. Background

    Cognitive training may partially reverse cognitive deficits in people with HIV (PWH). Previous functional MRI (fMRI) studies demonstrate that working memory training (WMT) alters brain activity during working memory tasks, but its effects on resting brain network organization remain unknown.

    Purpose

    To test whether WMT affects PWH brain functional connectivity in resting‐state fMRI (rsfMRI).

    Study Type

    Prospective.

    Population

    A total of 53 PWH (ages 50.7 ± 1.5 years, two women) and 53HIV‐seronegative controls (SN, ages 49.5 ± 1.6 years, six women).

    Field Strength/Sequence

    Axial single‐shot gradient‐echo echo‐planar imaging at 3.0 T was performed at baseline (TL1), at 1‐month (TL2), and at 6‐months (TL3), after WMT.

    Assessment

    All participants had rsfMRI and clinical assessments (including neuropsychological tests) at TL1 before randomization to Cogmed WMT (adaptive training,n = 58: 28 PWH, 30 SN; nonadaptive training,n = 48: 25 PWH, 23 SN), 25 sessions over 5–8 weeks. All assessments were repeated at TL2 and at TL3. The functional connectivity estimated by independent component analysis (ICA) or graph theory (GT) metrics (eigenvector centrality, etc.) for different link densities (LDs) were compared between PWH and SN groups at TL1 and TL2.

    Statistical Tests

    Two‐way analyses of variance (ANOVA) on GT metrics and two‐samplet‐tests on FC or GT metrics were performed. Cognitive (eg memory) measures were correlated with eigenvector centrality (eCent) using Pearson's correlations. The significance level was set atP < 0.05 after false discovery rate correction.

    Results

    The ventral default mode network (vDMN) eCent differed between PWH and SN groups at TL1 but not at TL2 (P = 0.28). In PWH, vDMN eCent changes significantly correlated with changes in the memory ability in PWH (r = −0.62 at LD = 50%) and vDMN eCent before training significantly correlated with memory performance changes (r = 0.53 at LD = 50%).

    Data Conclusion

    ICA and GT analyses showed that adaptive WMT normalized graph properties of the vDMN in PWH.

    Evidence Level

    1

    Technical Efficacy

    1

     
    more » « less