skip to main content

Search for: All records

Creators/Authors contains: "Essay, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available March 24, 2024
  3. Background Acute respiratory failure is generally treated with invasive mechanical ventilation or noninvasive respiratory support strategies. The efficacies of the various strategies are not fully understood. There is a need for accurate therapy-based phenotyping for secondary analyses of electronic health record data to answer research questions regarding respiratory management and outcomes with each strategy. Objective The objective of this study was to address knowledge gaps related to ventilation therapy strategies across diverse patient populations by developing an algorithm for accurate identification of patients with acute respiratory failure. To accomplish this objective, our goal was to develop rule-based computable phenotypes for patients with acute respiratory failure using remotely monitored intensive care unit (tele-ICU) data. This approach permits analyses by ventilation strategy across broad patient populations of interest with the ability to sub-phenotype as research questions require. Methods Tele-ICU data from ≥200 hospitals were used to create a rule-based algorithm for phenotyping patients with acute respiratory failure, defined as an adult patient requiring invasive mechanical ventilation or a noninvasive strategy. The dataset spans a wide range of hospitals and ICU types across all US regions. Structured clinical data, including ventilation therapy start and stop times, medication records, and nurse and respiratory therapy charts, were used to define clinical phenotypes. All adult patients of any diagnoses with record of ventilation therapy were included. Patients were categorized by ventilation type, and analysis of event sequences using record timestamps defined each phenotype. Manual validation was performed on 5% of patients in each phenotype. Results We developed 7 phenotypes: (0) invasive mechanical ventilation, (1) noninvasive positive-pressure ventilation, (2) high-flow nasal insufflation, (3) noninvasive positive-pressure ventilation subsequently requiring intubation, (4) high-flow nasal insufflation subsequently requiring intubation, (5) invasive mechanical ventilation with extubation to noninvasive positive-pressure ventilation, and (6) invasive mechanical ventilation with extubation to high-flow nasal insufflation. A total of 27,734 patients met our phenotype criteria and were categorized into these ventilation subgroups. Manual validation of a random selection of 5% of records from each phenotype resulted in a total accuracy of 88% and a precision and recall of 0.8789 and 0.8785, respectively, across all phenotypes. Individual phenotype validation showed that the algorithm categorizes patients particularly well but has challenges with patients that require ≥2 management strategies. Conclusions Our proposed computable phenotyping algorithm for patients with acute respiratory failure effectively identifies patients for therapy-focused research regardless of admission diagnosis or comorbidities and allows for management strategy comparisons across populations of interest. 
    more » « less
  4. Background Heart failure is a leading cause of mortality and morbidity worldwide. Acute heart failure, broadly defined as rapid onset of new or worsening signs and symptoms of heart failure, often requires hospitalization and admission to the intensive care unit (ICU). This acute condition is highly heterogeneous and less well-understood as compared to chronic heart failure. The ICU, through detailed and continuously monitored patient data, provides an opportunity to retrospectively analyze decompensation and heart failure to evaluate physiological states and patient outcomes. Objective The goal of this study is to examine the prevalence of cardiovascular risk factors among those admitted to ICUs and to evaluate combinations of clinical features that are predictive of decompensation events, such as the onset of acute heart failure, using machine learning techniques. To accomplish this objective, we leveraged tele-ICU data from over 200 hospitals across the United States. Methods We evaluated the feasibility of predicting decompensation soon after ICU admission for 26,534 patients admitted without a history of heart failure with specific heart failure risk factors (ie, coronary artery disease, hypertension, and myocardial infarction) and 96,350 patients admitted without risk factors using remotely monitored laboratory, vital signs, and discrete physiological measurements. Multivariate logistic regression and random forest models were applied to predict decompensation and highlight important features from combinations of model inputs from dissimilar data. Results The most prevalent risk factor in our data set was hypertension, although most patients diagnosed with heart failure were admitted to the ICU without a risk factor. The highest heart failure prediction accuracy was 0.951, and the highest area under the receiver operating characteristic curve was 0.9503 with random forest and combined vital signs, laboratory values, and discrete physiological measurements. Random forest feature importance also highlighted combinations of several discrete physiological features and laboratory measures as most indicative of decompensation. Timeline analysis of aggregate vital signs revealed a point of diminishing returns where additional vital signs data did not continue to improve results. Conclusions Heart failure risk factors are common in tele-ICU data, although most patients that are diagnosed with heart failure later in an ICU stay presented without risk factors making a prediction of decompensation critical. Decompensation was predicted with reasonable accuracy using tele-ICU data, and optimal data extraction for time series vital signs data was identified near a 200-minute window size. Overall, results suggest combinations of laboratory measurements and vital signs are viable for early and continuous prediction of patient decompensation. 
    more » « less