skip to main content

Search for: All records

Creators/Authors contains: "Faber, Courtney"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work investigates how innovations propagate through two professional networks (guilds): the Kern Entrepreneurial Engineering Network (KEEN) and the Consortium to Promote Reflection in Engineering Education (CPREE). Previous research has demonstrated that the adoption of pedagogical innovations is supported by the socialization of the innovation among potential adopters. In this work, we use social network analysis to explore the impact of professional connections on innovation adoption. Our research questions are: (1) How does overall social structure differ between guilds? (2) How do measures of social network structures relate to innovation adoption? A survey was distributed to members of KEEN and CPREE to capture the interactions respondents had while adopting the guild’s innovation. Social networks were generated for each guild and each respondent. These networks were analyzed to identify relationships between social network measures and the frequency of use of the innovation. Responses to open-ended questions were analyzed using thematic coding. The guilds’ overall structures impacted the formation and structure of distinct clusters/cliques, but these differing structures did not appear to affect sustained adoption. Individuals’ ego networks demonstrated a weak negative correlation between the frequency of adoption and the individual’s ego network density. Our results imply that having a diverse network exposes instructors to more ideas or allows them to see one idea from many perspectives.

    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Although engineering is becoming increasingly important in K-12 education, previous research has demonstrated that, similar to the general population, K-12 teachers typically hold inaccurate perceptions of engineering, which affects their ability to provide students with relevant engineering experiences. Studies have shown that K-12 teachers often confuse the work of engineers with that of automotive mechanics or construction workers or assume that engineering is only for “super smart” students who are naturally gifted or who come from higher socioeconomic backgrounds. This indicates that many teachers do not understand the nature of engineering work and have stereotypical attitudes about who is qualified to be an engineer. These inaccurate perceptions of engineering among K-12 teachers may influence the way that teachers introduce engineering practices to their students and make connections between engineering and the other STEM disciplines. In addition, teacher self-efficacy has been shown to not only influence teachers’ willingness to engage with a particular topic, but also to have a significant influence on the motivation and achievement of their students. Research also indicates that high-efficacy teachers typically exert more effort and utilize more effective instructional strategies than low-efficacy teachers. The goal of this study was to examine the perceptions that pre-service K-12 teachers hold about engineers and engineering, and to further explore how those perceptions influence their self-efficacy with teaching engineering and beliefs about what skills and resources are necessary to teach engineering in a K-12 classroom. We first developed a survey instrument that included questions taken from two previously published instruments: the Design, Engineering, and Technology survey and the Teaching Engineering Self-Efficacy Scale for K-12 Teachers. Forty-two students enrolled in an undergraduate program at {Name Redacted} in which students simultaneously pursue a bachelor’s degree in a STEM field and K-12 teacher licensure completed the survey. Based on survey responses, six participants, representing a range of self-efficacy scores and majors, were selected to participate in interviews. In these interviews, participants were asked questions about their perceptions of engineers and were also asked to sort a list of characteristics based on whether they applied to engineers or not. Finally, interview participants were asked questions about their confidence in their ability to teach engineering and about what skills and/or resources they would require to be able to teach engineering in their future classrooms. The results of this study indicated that the participants’ perceptions of engineering and engineers did impact their self-efficacy with teaching engineering and their beliefs about how well engineering could be incorporated into other STEM subjects. A recurring theme among participants with low self-efficacy was a lack of exposure to engineering and inaccurate perceptions of the nature of engineering work. These pre-service teachers felt that they would not be able to teach engineering to K-12 students because they did not personally have much exposure to engineering or knowledge about engineering work. In future work, we will investigate how providing pre-service teachers with training in engineering education and exposure to engineers and engineering students impacts both their perceptions of engineering and self-efficacy with teaching engineering. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Background: The National Science Foundation (NSF) and other organizations have spent millions of dollars each year supporting well-designed educational innovations that positively impact the undergraduate engineering students who encounter them. However, many of these pedagogical innovations never experience widespread adoption. To further the ability of innovation developers to advance engineering education practice and achieve sustained adoption of their innovations, this paper explores how one community-based model, engineering education guilds, fosters propagation across institutions and individuals. Engineering education guilds seek to work at the forefront of educational innovation by creating networks of instructor change-agents who design and implement a particular innovation in their own context. The guilds of interest are the Consortium to Promote Reflection in Engineering Education (CPREE) and the Kern Entrepreneurial Engineering Network (KEEN). With these guilds as exemplars, this study’s purpose is (1) to articulate how the approaches of engineering education guilds align with existing literature on supporting sustained adoption of educational innovations and (2) to identify how these approaches can advance the science, technology, engineering and math (STEM) education community’s discussion of propagation practices through the use of the Designing for Sustained Adoption Assessment Instrument (DSAAI). The DSAAI is a conceptual framework based on research in sustained adoption of pedagogical innovations. It has previously been used in the form of a rubric to analyze dissemination and propagation plans of NSF educational grant recipients and was shown to predict the effectiveness of those propagation plans. Results: Through semi-structured interviews with two leaders from each guild, we observed strong alignment between the structures of CRPEE and KEEN and evidence-based sustained adoption characteristics. For example, both guilds identified their intended audience early in their formation, developed and implemented extensive plans for engaging and supporting potential adopters, and accounted for the complexity of the higher education landscape and their innovations in their propagation plans. Conclusions: Our results suggest that guilds could provide another approach to innovation, as their structures can be aligned with evidence-based methods for propagating pedagogical innovations. Additionally, while the DSAAI captures many of the characteristics of a welld-esigned propagation strategy, there are additional components that emerged as successful strategies used by the CPREE and KEEN guild leaders. These strategies, including having mutual accountability among adopters and connecting adoption of innovations to faculty reward structures in the form of recognition and funding should be considered as educational innovators work to encourage adoption of their innovations. 
    more » « less
  4. Engineering education guilds, such as the Consortium to Promote Reflection in Engineering Education (CPREE) and the Kern Entrepreneurial Engineering Network (KEEN), seek to work at the forefront of educational innovation by creating networks of instructor change agents who design and implement a particular innovation in their own context to further the professional formation of engineers (PFE). While many of the innovations facilitated by CPREE and KEEN have been published extensively, it is unclear how successful the propagation of reflection and entrepreneurial mindset has been in the engineering education community. The major aim of this project is to characterize these two engineering education guilds with respect to their dissemination/propagation plans and, in the future, quantify the propagation of the innovations championed by CPREE and KEEN. The research questions we seek to answer in this paper are: (1) What are the planned dissemination/propagation approaches of well-established engineering education guilds? and (2) To what extent do their characteristics align with the Designing for Sustained Adoption Assessment Instrument (DSAAI)? The DSAAI was developed in 2016 to provide education developers, grant writing consultants, and funding agencies with a tool for assessing the propagation plans of researchers developing educational change strategies. To answer these questions, we conducted semi-structured interviews with the leaders of CPREE and KEEN. The transcriptions of the interviews will be used to create within-case reports for each guild. The within-case reports will consist of a rich description of the pedagogical innovation as well as the history of the guild and its goals. Using the DSAAI, we will qualitatively code the techniques that each guild is using to facilitate widespread adoption as well as the extent to which they are following a dissemination or propagation paradigm. Lastly, thematic analysis will be used to capture emerging themes that arise from the interviews. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    As the field continues to grow, engineering education is continually challenged with finding engineering education research (EER) positions that align with the broad abilities and interests of its members. EER positions exist in engineering education departments, traditional engineering departments (e.g., mechanical, civil), and in non-degree granting programs (e.g., centers for teaching and learning, engineering programs). These positions vary across their emphasis on research, teaching, and service and provide access to different resources and mechanisms to impact engineering education. Given the range of positions available in EER and the emergence of new EER programs, it can be challenging for graduate students and postdocs to navigate the job search process and identify a position that aligns with their professional goals. The purpose of this research was to better understand the EER job market as it relates to what applicants (i.e., graduates and post-docs) experience as they navigate the job-search and decision-making process. For this study, we conducted interviews with seven transitioning first-year EER faculty members. These individuals were transitioning into various EER faculty positions (e.g. Lecturer, Teaching Fellow, Assistant Professor, Research Assistant Professor) with different backgrounds in EER based on their graduate training experiences which included established EER programs as well as traditional engineering departments with EER advisor(s). We asked questions that focused on the individual’s new faculty position, their perception of the weekly time requirements, their job search process, and factors that influenced their final decision of which job to select. Each interview was conducted by two graduate students and was then transcribed and verified for accuracy. Three faculty members performed holistic coding of the transcripts focused on three areas: EER position types, job search process, and job decision making process. The Qualifying Qualitative research Quality framework (Q3) was used as a guide throughout our data collection and analysis process to ensure reliability and trustworthiness of the data collected. Through our analysis process, we developed a visual representation that provides a guide to assist EER graduate students and postdocs with their job search process. The first figure captures the diversity of positions along with the types of institutions where these positions exist to provide a starting point for individuals on their job search process. The second figure includes a timeline to help capture the average time frames for different phases of the job search process. Factors associated with final decisions based on the interviews conducted are also outlined to provide areas of consideration for individuals undergoing this process in the future. This work provides insight to aspiring academics about the range of opportunities available to those with a background in EER and how they can pursue finding alignment between their interests and positions that are available. 
    more » « less
  7. null (Ed.)
  8. Abstract Background

    Engineering education scholars (EES) seek to advance innovation, excellence, and access within education systems and the engineering profession. To advance such efforts, the intentional and strategic actions taken by scholars must be better understood.


    This study aimed to advance the field's understanding of agency toward impact by (1) closely examining the experiences of early career EES pursuing impact in engineering education and (2) co‐constructing a contextualized theory of agency. We define agency as taking strategic actions or perspectives toward professional goals that matter to oneself and goals that relate to impacting engineering education.


    Building on previous work about faculty agency, we leveraged approaches from grounded theory and integrated multiple qualitative approaches to analyze our experiences as six early career EES over the course of a 4‐year longitudinal study.


    Seven key insights about the professional agency toward impact in engineering education of early career EES emerged from the analysis. The contextualized theory and resulting visual representation illustrate this agency as a cyclical process with three components: (1) the factors influencing one's agency, (2) the agentic process itself, and (3) the output of the agentic process.


    Our co‐constructed contextualized theory extends previous work by incorporating the temporal nature of agency, the generation and assessment of available moves, and the importance of feedback on future agentic practices. Our results have implications on how the engineering education community supports graduate students, early career scholars, and new members in their efforts to impact change.

    more » « less
  9. null (Ed.)
    As the field of engineering education continues to evolve, the number of early career scholars who identify as members of the discipline will continue to increase. These engineering education scholars will need to take strategic and intentional actions towards their professional goals and the goals of the engineering education community to be impactful within their positions. In other words, they must exercise agency. Accordingly, the purpose of this study is to investigate how the agency of early career, engineering education scholars manifests across different contexts. Our overarching research question is: How do institutional, individual, and disciplinary field and societal features influence early career engineering education faculty member’s agency to impact engineering education in their particular positions? To investigate how faculty agency manifests across different contexts, we adopted a longitudinal research approach to focus on our own experiences as engineering education scholars. Due to the complexity of the phenomenon, more common approaches to qualitative research (e.g., interviews, surveys, etc.) were unlikely to illuminate the manifestation of agency, which requires capturing the nuances associated with one’s day-to-day experiences. Thus, to address our research purpose, we required a research design that provided a space to explore one’s acceptance of ambiguity, responses to disappointments, willingness to adapt, process of adapting, and experiences with collaboration. The poster presented will provide a preliminary version of the model along with a detailed description of the methods used to develop it. In short, we integrated collaborative inquiry and collaborative autoethnography as a means for building our model. Autoethnography is a research approach that critically examines personal experience to explore a cultural phenomenon. Collaborative autoethnography, which leverages collective sense-making of the data, informed the structure of our data collection. Specifically, we documented our individual experiences over the course of six semesters by (1) completing weekly, monthly, pre-semester, and post-semester reflection questions; (2) participating in periodic activities and discussions focused on targeted areas of our theoretical framework and relevant literature; and (3) discussing the outcomes from both (1) and (2) in weekly meetings. Collaborative inquiry, in contrast to collaborative autoethnography, is a research approach where people pair reflection on practice with action through multiple inquiry cycles. Collaborative inquiry guided the topics of discussion within our weekly meetings and how we approached challenges and other aspects of our positions. The combination of these methodologies allowed us to deeply and systematically explore our own experiences, allowing us to develop a model of professional agency towards change in engineering education through collaborative sense-making. By sharing our findings with current and developing engineering education graduate programs, we will enable them to make programmatic changes to benefit current and future engineering education scholars. These findings also will provide a mechanism for divisions within ASEE to develop programming and resources to support the sustained success and impact of their members. 
    more » « less