Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The non-volatile Resistive RAM (ReRAM) crossbar has shown great potential in accelerating inference in various machine learning models However, it suffers from high reprogramming energy, hindering its usage for on-device adaption to new tasks. Recently, parameter-efficient fine-tuning methods, such as Low-Rank Adaption (LoRA), have been proposed to train few parameters while matching full fine-tuning performance. However, in ReRAM crossbar, the reprogramming cost of LoRA is non-trivial and will increase significantly when adapting to multi-tasks on the device. To address this issue, we are the first to propose LoRAFusion, a parameter-efficient multi-task on-device learning framework for ReRAM crossbar via fusion of pre-trained LoRA modules. LoRAFusion is a group of LoRA modules that are one-time learned based on diverse domain-specific tasks and deployed to the crossbar, acting as the pool of background knowledge. Then given a new unseen task, those LoRA modules are frozen (i.e., no energy-hungry ReRAM cells reprograming), only the proposed learnable layer-wise LoRA fusion coefficient and magnitude vector parameters are trained on-device to weighted-combine pre-trained LoRA modules, which significantly reduces the training parameter size. Our comprehensive experiments show LoRAFusion only uses 3% of the number of trainable parameters in LoRA (148K vs. 4700K), with 0.19% accuracy drop. Codes are available at https://github.com/ASU-ESIC-FAN-Lab/LoRAFusionmore » « lessFree, publicly-accessible full text available June 29, 2026
- 
            Free, publicly-accessible full text available June 11, 2026
- 
            With the rapid advancement of DNNs, numerous Process-in-Memory (PIM) architectures based on various memory technologies (Non-Volatile (NVM)/Volatile Memory) have been developed to accelerate AI workloads. Magnetic Random Access Memory (MRAM) is highly promising among NVMs due to its zero standby leakage, fast write/read speeds, CMOS compatibility, and high memory density. However, existing MRAM technologies such as spin-transfer torque MRAM (STT-MRAM) and spin-orbit torque MRAM (SOT-MRAM), have inherent limitations. STT-MRAM faces high write current requirements, while SOT-MRAM introduces significant area overhead due to additional access transistors. The new STT-assisted-SOT (SAS) MRAM provides an area-efficient alternative by sharing one write access transistor for multiple magnetic tunnel junctions (MTJs). This work presents the first fully digital processing-in-SAS-MRAM system to enable 8-bit floating-point (FP8) neural network inference with an application in on-device session-based recommender system. A SAS-MRAM device prototype is fabricated with 4 MTJs sharing the same SOT metal line. The proposed SAS-MRAM-based PIM macro is designed in TSMC 28nm technology. It achieves 15.31 TOPS/W energy efficiency and 269 GOPS performance for FP8 operations at 700 MHz. Compared to state-of-the-art recommender systems for the same popular YooChoose dataset, it demonstrates a 86 ×, 1.8 ×, and 1.12 × higher energy efficiency than that of GPU, SRAM-PIM, and ReRAM-PIM, respectively.more » « lessFree, publicly-accessible full text available June 29, 2026
- 
            Inspired by the success of Self-Supervised Learning (SSL) in learning visual representations from unlabeled data, a few recent works have studied SSL in the context of Continual Learning (CL), where multiple tasks are learned sequentially, giving rise to a new paradigm, namely Self-Supervised Continual Learning (SSCL). It has been shown that the SSCL outperforms Supervised Continual Learning (SCL) as the learned representations are more informative and robust to catastrophic forgetting. However, building upon the training process of SSL, prior SSCL studies involve training all the parameters for each task, resulting to prohibitively high training cost. In this work, we first analyze the training time and memory consumption and reveals that the backward gradient calculation is the bottleneck. Moreover, by investigating the task correlations in SSCL, we further discover an interesting phenomenon that, with the SSL-learned background model, the intermediate features are highly correlated between tasks. Based on these new finding, we propose a new SSCL method with layer-wise freezing which progressively freezes partial layers with the highest correlation ratios for each task to improve training computation efficiency and memory efficiency. Extensive experiments across multiple datasets are performed, where our proposed method shows superior performance against the SoTA SSCL methods under various SSL frameworks. For example, compared to LUMP, our method achieves 1.18x, 1.15x, and 1.2x GPU training time reduction, 1.65x, 1.61x, and 1.6x memory reduction, 1.46x, 1.44x, and 1.46x backward FLOPs reduction, and 1.31%/1.98%/1.21% forgetting reduction without accuracy degradation on three datasets, respectively.more » « lessFree, publicly-accessible full text available April 23, 2026
- 
            In this work, we present Phantom, a novel privacy-preserving framework for obfuscating deep neural network (DNN) model deployed in heterogeneous TEE/GPU systems. Phantom employs reinforcement learning to add lightweight obfuscation layers, degrading model performance for adversaries while maintaining functionality for authorized user. To reduce the off-chip data communication between TEE and GPU, we propose a Top-K layer-wise obfuscation sensitivity analysis method. Extensive experiments demonstrate Phantom's superiority over state-of-the-art (SoTA) defense methods against model stealing and fine-tuning attacks across various architectures and datasets. It reduces unauthorized accuracy to near-random guessing (e.g., 10% for CIFAR-10 tasks, 1% for CIFAR-100 tasks) and achieves a 6.99% average attack success rate for model stealing, significantly outperforming SoTA competing methods. System implementation on Intel SGX2 and NVIDIA GPU heterogeneous system achieves 35% end-to-end latency reduction compared with most recent SoTA work.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Nowadays, parameter-efficient fine-tuning (PEFT) large pre-trained models (LPMs) for downstream task have gained significant popularity, since it could significantly minimize the training computational overhead. The representative work, LoRA [1], learns a low-rank adaptor for a new downstream task, rather than fine-tuning the whole backbone model. However, for inference, the large size of the learned model remains unchanged, leading to in-efficient inference computation. To mitigate this, in this work, we are the first to propose a learning-to-prune methodology specially designed for fine-tuning downstream tasks based on LPMs with low-rank adaptation. Unlike prior low-rank adaptation approaches that only learn the low-rank adaptors for downstream tasks, our method further leverages the Gumbel-Sigmoid tricks to learn a set of trainable binary channel-wise masks that automatically prune the backbone LPMs. Therefore, our method could leverage the benefits of low-rank adaptation to reduce the training parameters size and smaller pruned backbone LPM size for efficient inference computation. Extensive experiments show that the Pruned-RoBbase model with our method achieves an average channel-wise structured pruning ratio of 24.5% across the popular GLUE Benchmark, coupled with an average of 18% inference time speed-up in real NVIDIA A5000 GPU. The Pruned-DistilBERT shows an average of 13% inference time improvement with 17% sparsity. The Pruned-LLaMA-7B model achieves up to 18.2% inference time improvement with 24.5% sparsity, demonstrating the effectiveness of our learnable pruning approach across different models and tasks.more » « lessFree, publicly-accessible full text available January 20, 2026
- 
            Adversarial bit-flip attack (BFA), a type of powerful adversarial weight attack demonstrated in real computer systems has shown enormous success in compromising Deep Neural Network (DNN) performance with a minimal amount of model parameter perturbation through rowhammer-based computer main memory bit-flip. For the first time in this work, we demonstrate to defeat adversarial bit-flip attacks by developing a Robust and Accurate Binary Neural Network (RA-BNN) that adopts a complete BNN (i.e., weights and activations are both in binary). Prior works have demonstrated that binary or clustered weights could intrinsically improve a network's robustness against BFA, while in this work, we further reveal that binary activation could improve such robustness even better. However, with both aggressive binary weight and activation representations, the complete BNN suffers from poor clean (i.e., no attack) inference accuracy. To counter this, we propose an efficient two-stage complete BNN growing method for constructing simultaneously robust and accurate BNN, named RA-Growth. It selectively grows the channel size of each BNN layer based on trainable channel-wise binary mask learning with a Gumbel-Sigmoid function. The wider binary network (i.e., RA-BNN) has dual benefits: it can recover clean inference accuracy and significantly higher resistance against BFA. Our evaluation of the CIFAR-10 dataset shows that the proposed RA-BNN can improve the resistance to BFA by up to 100 x. On ImageNet, with a sufficiently large (e.g., 5,000) number of bit-flips, the baseline BNN accuracy drops to 4.3 % from 51.9 %, while our RA-BNN accuracy only drops to 37.1 % from 60.9 %, making it the best defense performance.more » « lessFree, publicly-accessible full text available January 6, 2026
- 
            Hyb-Learn: A Framework for On-Device Self-Supervised Continual Learning with Hybrid RRAM/SRAM MemoryWhile RRAM crossbar-based In-Memory Computing (IMC) has proven highly effective in accelerating Deep Neural Networks (DNNs) inference, RRAM-based on-device training is less explored due to its high energy consumption of weight re-programming and cells' low endurance problem. Besides, emerging trends indicate a need for on-device continual learning which sequentially acquires knowledge from multiple tasks to enhance user's experiences and eliminate data privacy concerns. However, learning on each new task leads to forgetting prior learned knowledge on prior tasks, which is known as catastrophic forgetting. To address these challenges, we are the first to propose a novel training framework, Hyb-Learn, for enabling on-device continual learning with a hybrid RRAM/SRAM IMC architecture design. Specifically, when training each new arriving task, our approach first partitions the model into two groups based on the proposed task-correlated PE-wise correlation to freeze or re-training, and correspondingly mapping to RRAM and SRAM, respectively. In practice, the RRAM stores frozen weights with strong task correlation to prior tasks to eliminate the high cost of weight reprogramming issue of RRAM, while the SRAM stores the remaining weights that will be updated. Furthermore, to maximize the freezing ratio for improving training efficiency while maintaining accuracy and mitigating catastrophic forgetting, we incorporate self-supervised learning algorithms that are initialized from a pre-trained model for training each new task.more » « less
- 
            FPGA virtualization has garnered significant industry and academic interests as it aims to enable multi-tenant cloud systems that can accommodate multiple users' circuits on a single FPGA. Although this approach greatly enhances the efficiency of hardware resource utilization, it also introduces new security concerns. As a representative study, one state-of-the-art (SOTA) adversarial fault injection attack, named Deep-Dup, exemplifies the vulnerabilities of off-chip data communication within the multi-tenant cloud-FPGA system. Deep-Dup attacks successfully demonstrate the complete failure of a wide range of Deep Neural Networks (DNNs) in a black-box setup, by only injecting fault to extremely small amounts of sensitive weight data transmissions, which are identified through a powerful differential evolution searching algorithm. Such emerging adversarial fault injection attack reveals the urgency of effective defense methodology to protect DNN applications on the multi-tenant cloud-FPGA system. This paper, for the first time, presents a novel moving-target-defense (MTD) oriented defense framework DeepShuffle, which could effectively protect DNNs on multi-tenant cloud-FPGA against the SOTA Deep-Dup attack, through a novel lightweight model parameter shuffling methodology. DeepShuffle effectively counters the Deep-Dup attack by altering the weight transmission sequence, which effectively prevents adversaries from identifying security-critical model parameters from the repeatability of weight transmission during each inference round. Importantly, DeepShuffle represents a training-free DNN defense methodology, which makes constructive use of the typologies of DNN architectures to achieve being lightweight. Moreover, the deployment of DeepShuffle neither requires any hardware modification nor suffers from any performance degradation. We evaluate DeepShuffle on the SOTA open-source FPGA-DNN accelerator, Vertical Tensor Accelerator (VTA), which represents the practice of real-world FPGA-DNN system developers. We then evaluate the performance overhead of DeepShuffle and find it only consumes an additional ~3% of the inference time compared to the unprotected baseline. DeepShuffle improves the robustness of various SOTA DNN architectures like VGG, ResNet, etc. against Deep-Dup by orders. It effectively reduces the efficacy of evolution searching-based adversarial fault injection attack close to random fault injection attack, e.g., on VGG-11, even after increasing the attacker's effort by 2.3x, our defense shows a ~93% improvement in accuracy, compared to the unprotected baseline.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available