skip to main content


Search for: All records

Creators/Authors contains: "Farhadi, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose TuringAdvice, a new challenge task and dataset for language understanding models. Given a written situation that a real person is currently facing, a model must generate helpful advice in natural language. Our evaluation framework tests a fundamental aspect of human language understanding: our ability to use language to resolve open-ended situations by communicating with each other. Empirical results show that today’s models struggle at TuringAdvice, even multibillion parameter models finetuned on 600k in-domain training examples. The best model, T5, writes advice that is at least as helpful as human-written advice in only 14% of cases; a much larger non-finetunable GPT3 model does even worse at 4%. This low performance reveals language understanding errors that are hard to spot outside of a generative setting, showing much room for progress. 
    more » « less
  2. Recent progress in natural language generation has raised dual-use concerns. While applications like summarization and translation are positive, the underlying technology also might enable adversaries to generate neural fake news: targeted propaganda that closely mimics the style of real news. Modern computer security relies on careful threat modeling: identifying potential threats and vulnerabilities from an adversary's point of view, and exploring potential mitigations to these threats. Likewise, developing robust defenses against neural fake news requires us first to carefully investigate and characterize the risks of these models. We thus present a model for controllable text generation called Grover. Given a headline like `Link Found Between Vaccines and Autism,' Grover can generate the rest of the article; humans find these generations to be more trustworthy than human-written disinformation. Developing robust verification techniques against generators like Grover is critical. We find that best current discriminators can classify neural fake news from real, human-written, news with 73% accuracy, assuming access to a moderate level of training data. Counterintuitively, the best defense against Grover turns out to be Grover itself, with 92% accuracy, demonstrating the importance of public release of strong generators. We investigate these results further, showing that exposure bias -- and sampling strategies that alleviate its effects -- both leave artifacts that similar discriminators can pick up on. We conclude by discussing ethical issues regarding the technology, and plan to release Grover publicly, helping pave the way for better detection of neural fake news. 
    more » « less
  3. Visual relationship reasoning is a crucial yet challenging task for understanding rich interactions across visual concepts. For example, a relationship 'man, open, door' involves a complex relation 'open' between concrete entities 'man, door'. While much of the existing work has studied this problem in the context of still images, understanding visual relationships in videos has received limited attention. Due to their temporal nature, videos enable us to model and reason about a more comprehensive set of visual relationships, such as those requiring multiple (temporal) observations (e.g., 'man, lift up, box' vs. 'man, put down, box'), as well as relationships that are often correlated through time (e.g., 'woman, pay, money' followed by 'woman, buy, coffee'). In this paper, we construct a Conditional Random Field on a fully-connected spatio-temporal graph that exploits the statistical dependency between relational entities spatially and temporally. We introduce a novel gated energy function parametrization that learns adaptive relations conditioned on visual observations. Our model optimization is computationally efficient, and its space computation complexity is significantly amortized through our proposed parameterization. Experimental results on benchmark video datasets (ImageNet Video and Charades) demonstrate state-of-the-art performance across three standard relationship reasoning tasks: Detection, Tagging, and Recognition. 
    more » « less
  4. We present a scalable approach for Detecting Objects by transferring Common-sense Knowledge (DOCK) from source to target categories. In our setting, the training data for the source categories have bounding box annotations, while those for the target categories only have image-level annotations. Current state-of-the-art approaches focus on image-level visual or semantic similarity to adapt a detector trained on the source categories to the new target categories. In contrast, our key idea is to (i) use similarity not at the image-level, but rather at the region-level, and (ii) leverage richer common-sense (based on attribute, spatial, etc.) to guide the algorithm towards learning the correct detections. We acquire such common-sense cues automatically from readily-available knowledge bases without any extra human effort. On the challenging MS COCO dataset, we find that common-sense knowledge can substantially improve detection performance over existing transfer-learning baselines. 
    more » « less