skip to main content

Search for: All records

Creators/Authors contains: "Ferland, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Radiation pressure-driven outflows from luminous accreting supermassive black holes are an important part of active galactic nucleus (AGN) feedback. The effective Eddington limit, based on absorption of radiation by dust, not electron scattering, is revealed in the plane of AGN absorption column density NH as a function of Eddington fraction λEdd = Lbol/LEdd, where a lack of objects is seen in the region where the effective limit is exceeded. Here, we conduct radiation simulation using the cloudy code to deduce the radiative force applied on to dusty gas at the nucleus and compare to the gravitational force to reveal the outflow region and its boundary with long-lived absorption clouds. We also investigate how the outflow condition is affected by various AGN and dust properties and distribution. As expected, the dust abundance has the largest effect on the NH–λEdd diagram since the higher the abundance, the more effective the radiative feedback, while the impact of the inner radius of the dusty gas shell, the shell width, and the AGN spectral shape are relatively negligible. The presence of other central masses, such as a nuclear star cluster, can also make the feedback less effective. The AGN spectral energy distribution depends on themore »mass of the black hole and its spin. Though the effects of the AGN spectral energy distribution on the diagram are relatively small, the fraction of ionizing ultraviolet photons from the blackbody accretion disc is affected more by black hole mass than spin, and can influence the efficiency of radiation pressure.

    « less
  2. Abstract

    Here, we present our current updates to the gas-phase chemical reaction rates and molecular lines in the spectral synthesis codecloudy, and its implications in spectroscopic modeling of various astrophysical environments. We include energy levels, and radiative and collisional rates for HF, CF+, HC3N, ArH+, HCl, HCN, CN, CH, and CH2. Simultaneously, we expand our molecular network involving these molecules. For this purpose, we have added 561 new reactions and have updated the existing 165 molecular reaction rates involving these molecules. As a result,cloudynow predicts all the lines arising from these nine molecules. In addition, we also update H2–H2collisional data up to rotational levelsJ= 31 forv= 0. We demonstrate spectroscopic simulations of these molecules for a few astrophysical environments. Our existing model for globules in the Crab Nebula successfully predicts the observed column density of ArH+. Our model predicts a detectable amount of HeH+, OH+, and CH+for the Crab Nebula. We also model the interstellar medium toward HD185418, W31C, and NGC 253, and our predictions match with most of the observed column densities within the observed error bars. Very often molecular lines trace various physical conditions. Hence, this update will be very supportive for spectroscopic modeling of various astrophysical environments,more »particularly involving submillimeter and mid-infrared observations using the Atacama Large Millimeter/submillimeter Array and the James Webb Space Telescope, respectively.

    « less
  3. ABSTRACT Steadily accreting white dwarfs (WDs) are efficient sources of ionization and thus are able to create extended ionized nebulae in their vicinity. These nebulae represent ideal tools for the detection of accreting WDs, given that in most cases the source itself is faint. In this work, we combine radiation transfer simulations with known H- and He-accreting WD models, providing for the first time the ionization state and the emission-line spectra of the formed nebulae as a function of the WD mass, the accretion rate and the chemical composition of the accreted material. We find that the nebular optical line fluxes and radial extent vary strongly with the WD’s accretion properties, peaking in systems with WD masses of 0.8–1.2 $\rm M_{\odot }$. Projecting our results on so-called BPT diagnostic diagrams, we show that accreting WD nebulae possess characteristics distinct from those of H ii-like regions, while they have line ratios similar to those in galactic low-ionization emission-line regions. Finally, we compare our results with the relevant constraints imposed by the lack of ionized nebulae in the vicinity of supersoft X-ray sources (SSSs) and Type Ia supernova remnants – sources that are related to steadily accreting WDs. The large discrepancies uncovered by our comparisonmore »rule out any steadily accreting WD as a potential progenitor of the studied remnants and additionally require the ambient medium around the SSSs to be less dense than 0.2 $\rm cm^{-3}$. We discuss possible alternatives that could bridge the incompatibility between the theoretical expectations and relevant observations.« less
    Free, publicly-accessible full text available May 5, 2023
  4. Abstract

    Molecular emission was imaged with ALMA from numerous components near and within bright H2-emitting knots and absorbing dust globules in the Crab Nebula. These observations provide a critical test of how energetic photons and particles produced in a young supernova remnant interact with gas, cleanly differentiating between competing models. The four fields targeted show contrasting properties but within them, seventeen distinct molecular clouds are identified with CO emission; a few also show emission from HCO+, SiO, and/or SO. These observations are compared with Cloudy models of these knots. It has been suggested that the Crab filaments present an exotic environment in which H2emission comes from a mostly neutral zone probably heated by cosmic rays produced in the supernova surrounding a cool core of molecular gas. Our model is consistent with the observed COJ= 3 − 2 line strength. These molecular line emitting knots in the Crab Nebula present a novel phase of the ISM representative of many important astrophysical environments.