skip to main content

Search for: All records

Creators/Authors contains: "Fischer, Jannick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Over the last decade, supercell simulations and observations with ever increasing resolution have provided new insights into the vortex-scale processes of tornado formation. This article incorporates these and other recent findings into the existing three-step model by adding an additional fourth stage. The goal is to provide an updated and clear picture of the physical processes occurring during tornadogenesis. Specifically, we emphasize the importance of the low-level wind shear and mesocyclone for tornado potential, the organization and interaction of relatively small-scale pre-tornadic vertical vorticity maxima, and the transition to a tornado-characteristic flow. Based on these insights, guiding research questions are formulated for the decade ahead.

    more » « less
    Free, publicly-accessible full text available April 18, 2025
  2. Abstract It has long been observed that interactions of a supercell with other storms or storm-scale boundaries sometimes seem to directly instigate tornadogenesis. First, the authors explore the frequency of such constructive interactions. WSR-88D radar data are used to categorize 136 tornadic supercells into isolated supercells and supercells that interacted with external factors within 20 min before tornadogenesis. Most cases (80%) showed some form of external influence prior to tornadogenesis. Common patterns of interactions, the typical supercell quadrant that is affected, and changes in azimuthal shear are also identified. To further study these interactions, two sets of idealized CM1 simulations are performed. The first set demonstrates that the speed of the near-ground horizontal flow relative to the updraft can control whether a vortex patch develops into a tornado. A weaker updraft-relative flow is favorable because the developing vortex stays in the updraft region longer and becomes less tilted. Building on these results, it is shown that external outflow can lead to tornado formation by a deceleration of the updraft-relative flow. The deceleration is caused by the pressure gradient force associated with the external outflow, which is already noticeable several kilometers ahead of the outflow boundary. This offers another possible mechanism by which external outflow can act as a catalyst for supercell tornadogenesis. 
    more » « less
  3. Abstract

    Although much is known about the environmental conditions necessary for supercell tornadogenesis, the near-ground vorticity dynamics during the tornadogenesis process itself are still somewhat poorly understood. For instance, seemingly contradicting mechanisms responsible for large near-ground vertical vorticity can be found in the literature. Broadly, these mechanisms can be sorted into two classes, one being based on upward tilting of mainly baroclinically produced horizontal vorticity in descending air (here called the downdraft mechanism), while in the other the horizontal vorticity vector is abruptly tilted upward practically at the surface by a strong updraft gradient (referred to as the in-and-up mechanism). In this study, full-physics supercell simulations and highly idealized simulations show that both mechanisms play important roles during tornadogenesis. Pretornadic vertical vorticity maxima are generated via the downdraft mechanism, while the dynamics of a fully developed vortex are dominated by the in-and-up mechanism. Consequently, a transition between the two mechanisms occurs during tornadogenesis. This transition is a result of axisymmetrization of the pretornadic vortex patch and intensification via vertical stretching. These processes facilitate the development of the corner flow, which enables production of vertical vorticity by upward tilting of horizontal vorticity practically at the surface, i.e., the in-and-up mechanism. The transition of mechanisms found here suggests that early stages of tornado formation rely on the downdraft mechanism, which is often limited to a small vertical component of baroclinically generated vorticity. Subsequently, a larger supply of horizontal vorticity (produced baroclinically or via surface drag, or even imported from the environment) may be utilized, which marks a considerable change in the vortex dynamics.

    more » « less
  4. null (Ed.)
    Abstract In the recent literature, the conception has emerged that supercell tornado potential may mostly depend on the strength of the low-level updraft, with more than sufficient subtornadic vertical vorticity being assumed to be present in the outflow. In this study, we use highly idealized simulations with heat sinks and sources to conduct controlled experiments, changing the cold pool or low-level updraft character independently. Multiple, time-dependent heat sinks are employed to produce a realistic near-ground cold pool structure. It is shown that both the cold pool and updraft strength actively contribute to the tornado potential. Furthermore, there is a sharp transition between tornadic and nontornadic cases, indicating a bifurcation between these two regimes triggered by small changes in the heat source or sink magnitude. Moreover, larger updraft strength, updraft width, and cold pool deficit do not necessarily result in a stronger maximum near-ground vertical vorticity. However, a stronger updraft or cold pool can both drastically reduce the time it takes for the first vortex to form. 
    more » « less