skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Origins of Vorticity in a Simulated Tornado-Like Vortex
Abstract The authors explore the dynamical origins of rotation of a mature tornado-like vortex (TLV) using an idealized numerical simulation of a supercell thunderstorm. Using 30-min forward parcel trajectories that terminate at the base of the TLV, the vorticity dynamics are analyzed forn= 7 parcels. Aside from the integration of the individual terms of the traditional vorticity equation, an alternative formulation of the vorticity equation and its integral, here referred to as vorticity source decomposition, is employed. This formulation is derived on the basis of Truesdell’s “basic vorticity formula,” which is obtained by first formulating the vorticity in material (Lagrangian) coordinates, and then obtaining the components relative to the fixed spatial (Eulerian) basis by applying the vector transformation rule. The analysis highlights surface drag as the most reliable vorticity source for the rotation at the base of the vortex for the analyzed parcels. Moreover, the vorticity source decomposition exposes the importance of small amounts of vorticity produced baroclinically, which may become significant after sufficient stretching occurs. Further, it is shown that ambient vorticity, upon being rearranged as the trajectories pass through the storm, may for some parcels directly contribute to the rotation of the TLV. Finally, the role of diffusion is addressed using analytical solutions of the steady Burgers–Rott vortex, suggesting that diffusion cannot aid in maintaining the vortex core.  more » « less
Award ID(s):
2152537
PAR ID:
10584609
Author(s) / Creator(s):
;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
80
Issue:
5
ISSN:
0022-4928
Page Range / eLocation ID:
1361 to 1380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite their structural differences, supercells and quasi-linear convective systems (QLCS) are both capable of producing severe weather, including tornadoes. Previous research has highlighted multiple potential mechanisms by which horizontal vorticity may be reoriented into the vertical at low levels, but it is not clear in which situation what mechanism dominates. In this study, we use the CM1 model to simulate three different storm modes, each of which developed relatively large near-surface vertical vorticity. Using forward-integrated parcel trajectories, we analyze vorticity budgets and demonstrate that there seems to be a common mechanism for maintaining the near-surface vortices across storm structures. The parcels do not acquire vertical vorticity until they reach the base of the vortices. The vertical vorticity results from vigorous upward tilting and simultaneous vertical stretching. While the parcels analyzed in our simulations do have a history of descent, they do not acquire appreciable vertical vorticity during their descent. Rather, during the analysis period relatively large horizontal vorticity develops as a result of horizontal stretching by the horizontal wind, such that it can be effectively tilted into the vertical. 
    more » « less
  2. Abstract This case study analyzes the 17 May 2019 cyclic, tornadic supercell from southwest Nebraska observed by the Targeted Observation by Radars and UAS of Supercells (TORUS) field experiment. Specifically, 12 multi-Doppler wind syntheses are generated over a 96-min period from 2301 UTC 17 May to 0037 UTC 18 May using two P-3 airborne radars and the ground-based NOXP research radar. Synthesized winds and reflectivity are assimilated into a diabatic Lagrangian analysis for the retrieval of thermodynamic data. The 4D wind fields are found to correlate well with observed tornadic and nontornadic periods, and several storm-scale features related to low-level mesocyclone (LLM) and near-ground rotation processes are documented. This includes vortex line arches that are a defining feature during the first EF2 tornado, followed by an occlusion process and reorganization period. During the most active tornadic period, backward trajectories reveal both inflow parcels and forward-flank parcels participate in the core of the 0–1-km rotation. While tilting of streamwise vorticity into vertical vorticity and subsequent powerful vertical stretching occurs for both inflow and forward-flank parcels, the solenoidal generation of streamwise vorticity is dominant with the latter. This resembles streamwise vorticity currents found within numerical simulations. Last, an intense left-flank convergence boundary develops coincident with the intensification of storm-relative inflow winds, with its formation and dissipation correlated with the final tornado. The 96-min analysis period with 4D kinematic and thermodynamic data makes this study one of the most detailed supercell case studies presented in the literature. Significance StatementA detailed analysis of a supercell that produced nine tornadoes within a 96-min period is presented. The supercell was observed by five radars, which are used to obtain information about the 3D wind, temperature, and moisture fields. Although computer simulations can provide detailed looks into supercell processes, collecting and analyzing observed supercell data of this quality is challenging and rare. We identify features within the supercell that are correlated with periods of strong and weak tornado production. Additionally, we identify the source region of air that is associated with low-level rotation in the supercell and comment on the importance of temperature gradients observed within the supercell, comparing these results to what has been found in simulations. 
    more » « less
  3. Abstract In this study, the cause of rotation in simulated dust-devil-like vortices is investigated. The analysis uses a numerical simulation of an initially resting, dry, atmosphere, in which uniform surface heating leads to the development of a growing convective boundary layer (CBL). As soon as convective mixing sets in, regions of weak vertical vorticity develop at the lowest model level. Using forward trajectories, this vorticity is shown to originate from horizontal baroclinic production and simultaneous reorientation into the vertical within the descending branches of the convective cells. The requirement for vertical vorticity production in the downdraft cells is shown to be a nonaxisymmetric horizontal footprint of the downdraft regions. The resulting vertical vorticity is not initially associated with rotation. However, as the CBL matures, like-signed vortex patches merge, the vertical vorticity magnitude increases due to stretching, and deformation in the vortex patch decreases, leading to the development of vortices. The ultimate origin of the vortices is thus initially horizontal vorticity that has been produced baroclinically and that has subsequently been reoriented into the vertical in sinking air. Significance StatementDust devils are concentrated vortices consisting of rapidly rising buoyant air, which may pose a risk to small aircraft and light structures on the ground. Although these vortices are a common occurrence in convective boundary layers, the origin of the vorticity within these vortices has not yet been fully established. The present study uses a numerical simulation of an evolving convective boundary layer and analyzes air parcel trajectories to identify the origin of vertical vorticity at the surface during dust-devil formation. The work contributes an answer to the long-standing question of what causes dust devils to spin. 
    more » « less
  4. null (Ed.)
    Abstract A supercell produced a nearly tornadic vortex during an intercept by the Second Verification of the Origins of Rotation in Tornadoes Experiment on 26 May 2010. Using observations from two mobile radars performing dual-Doppler scans, a five-probe mobile mesonet, and a proximity sounding, factors that prevented this vortex from strengthening into a significant tornado are examined. Mobile mesonet observations indicate that portions of the supercell outflow possessed excessive negative buoyancy, likely owing in part to low boundary layer relative humidity, as indicated by a high environmental lifted condensation level. Comparisons to a tornadic supercell suggest that the Prospect Valley storm had enough far-field circulation to produce a significant tornado, but was unable to converge this circulation to a sufficiently small radius. Trajectories suggest that the weak convergence might be due to the low-level mesocyclone ingesting parcels with considerable crosswise vorticity from the near-storm environment, which has been found to contribute to less steady and weaker low-level updrafts in supercell simulations. Yet another factor that likely contributed to the weak low-level circulation was the inability of parcels rich in streamwise vorticity from the forward-flank precipitation region to reach the low-level mesocyclone, likely owing to an unfavorable pressure gradient force field. In light of these results, we suggest that future research should continue focusing on the role of internal, storm-scale processes in tornadogenesis, especially in marginal environments. 
    more » « less
  5. The structures of multiply quantized vortices (MQVs) of an equal-population atomic Fermi superfluid in a rotating spherical bubble trap approximated as a thin shell are analyzed by solving the Bogoliubov-de Gennes (BdG) equation throughout the BCS-Bose Einstein condensation (BEC) crossover. Consistent with the Poincare-Hopf theorem, a pair of vortices emerge at the poles of the rotation axis in the presence of azimuthal symmetry, and the compact geometry provides confinement for the MQVs. While the single-vorticity vortex structure is similar to that in a planar geometry, higher-vorticity vortices exhibit interesting phenomena at the vortex center, such as a density peak due to accumulation of a normal Fermi gas and reversed circulation of current due to in-gap states carrying angular momentum, in the BCS regime but not the BEC regime because of the subtle relations between the order parameter and density. The energy spectrum shows the number of the in-gap state branches corresponds to the vorticity of a vortex, and an explanation based on a topological correspondence is provided. 
    more » « less