skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fitzpatrick, Marshuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work explores a method for analytically computing the infinites-imal phase response curves (iPRCs) of a synthetic nervous system (SNS) for a hybrid exoskeleton. Phase changes, in response to perturbations, revealed by the iPRCs, could assist in tuning the strength and locations of sensory pathways. We model the SNS exoskeleton controller in a reduced form using a state-space rep-resentation that interfaces neural and motor dynamics. The neural dynamics are modeled after non-spiking neurons configured as a central pattern generator (CPG), while the motor dynamics model a power unit for the hip joint of the exoskeleton. Within the dynamics are piecewise functions and hard boundaries (i.e. “sliding conditions”), which cause discontinuities in the vector field at their boundaries. The analytical methods for computing the iPRCs used in this work apply the adjoint equation method with jump conditions that are able to account for these discontinuities. To show the accuracy and speed provided by these methods, we compare the analytical and brute-force solutions. 
    more » « less