skip to main content

Search for: All records

Creators/Authors contains: "Flannigan, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 22, 2024
  2. Spatial and energy resolutions of state-of-the-art transmission electron microscopes (TEMs) have surpassed 50 pm and 5 meV. However, with respect to the time domain, even the fastest detectors combined with the brightest sources may only be able to reach the microsecond timescale. Thus, conventional methods are incapable of resolving myriad fundamental ultrafast ( i.e., attosecond to picosecond) atomic-scale dynamics. The successful demonstration of femtosecond (fs) laser-based (LB) ultrafast transmission electron microscopy (UEM) nearly 20 years ago provided a means to span this nearly 10-order-of-magnitude temporal gap. While nanometer-picosecond UEM studies of dynamics are now well established, ultrafast Å-scale imaging has gone largely unrealized. Further, while instrument development has rightly been an emphasis, and while new modalities and uses of pulsed-beam TEM continue to emerge, the overall chemical and materials application space has been only modestly explored to date. In this Perspectives article, we argue that these apparent shortfalls can be attributed to a simple lack of data and detail. We speculate that present work and continued growth of the field will ultimately lead to the realization that Å-scale fs dynamics can indeed be imaged with minimally modified UEM instrumentation and with repetition rates ( f rep ) below - andmore »perhaps even well below - 1 MHz. We further argue that use of low f rep , whether for LB UEM or for chopped/bunched beams, significantly expands the accessible application space. This calls for systematically establishing modality-specific limits so that especially promising technologies can be pursued, thus ultimately facilitating broader adoption as individual instrument capabilities expand.« less
    Free, publicly-accessible full text available October 18, 2023
  3. In femtosecond (fs) 4D ultrafast electron microscopy (UEM), a tradeoff is made between photoelectrons per packet and time resolution. One consequence of this can be longer-than-desirable acquisition times for low-density packets, and particularly for low repetition rates when complete photothermal dissipation is required. Thus, gaining an understanding of photoelectron trajectories in the gun region is important for identifying factors that limit collection efficiency (CE; fraction of photoelectrons that enter the illumination system). Here, we continue our work on the systematic study of photoelectron trajectories in the gun region of a Thermo Fisher/FEI Tecnai Femto UEM, focusing specifically on CE in the single-electron regime. Using General Particle Tracer, calculated field maps, and the exact architecture of the Tecnai Femto UEM, we simulated the effects of fs laser parameters and key gun elements on CE. The results indicate CE strongly depends upon the laser spot size on the source, the (unbiased) Wehnelt aperture diameter, and the incident photon energy. The CE dispersion with laser spot size is found to be strongly dependent on aperture diameter, being nearly dispersionless for the largest apertures. A gun crossover is also observed, with the beam-waist position being dependent on the aperture diameter, further illustrating that themore »Wehnelt aperture acts as a simple, fixed electrostatic lens in UEM mode. This work provides further insights into the operational aspects of fs 4D UEM.« less
  4. Though efforts to improve the temporal resolution of transmission electron microscopes (TEMs) have waxed and waned for decades, with relatively recent advances routinely reaching sub-picosecond scales, fundamental and practical challenges have hindered the advance of combined Å–fs–meV resolutions, particularly for core-loss spectroscopy and real-space imaging. This is due in no small part to the complexity of the approach required to access timescales upon which electrons, atoms, molecules, and materials first begin to respond and transform – attoseconds to picoseconds. Here we present part of a larger effort devoted to systematically mapping the instrument parameter space of a TEM modified to reach ultrafast timescales. With General Particle Tracer, we studied the statistical temporal distributions of single-electron packets as a function of various fs pulsed-laser parameters and electron-gun configurations and fields for the exact architecture and dimensions of a Thermo Fisher Tecnai Femto ultrafast electron microscope. We focused on easily-adjustable parameters, such as laser pulse duration, laser spot size, photon energy, Wehnelt aperture diameter, and photocathode size. In addition to establishing trends and dispersion behaviors, we identify regimes within which packet duration can be 100s of fs and approach the 300 fs laser limit employed here. Overall, the results provide a detailedmore »picture of the temporal behavior of single-electron packets in the Tecnai Femto gun region, forming the initial contribution of a larger effort.« less
  5. null (Ed.)
    Key properties of two-dimensional (2D) layered materials are highly strain tunable, arising from bond modulation and associated reconfiguration of the energy bands around the Fermi level. Approaches to locally controlling and patterning strain have included both active and passive elastic deformation via sustained loading and templating with nanostructures. Here, by float-capturing ultrathin flakes of single-crystal 2H-MoS2 on amorphous holey silicon nitride substrates, we find that highly symmetric, high-fidelity strain patterns are formed. The hexagonally arranged holes and surface topography combine to generate highly conformal flake-substrate coverage creating patterns that match optimal centroidal Voronoi tessellation in 2D Euclidean space. Using TEM imaging and diffraction, as well as AFM topographic mapping, we determine that the substrate-driven 3D geometry of the flakes over the holes consists of symmetric, out-of-plane bowl-like deformation of up to 35 nm, with in-plane, isotropic tensile strains of up to 1.8% (measured with both selected-area diffraction and AFM). Atomistic and image simulations accurately predict spontaneous formation of the strain patterns, with van der Waals forces and substrate topography as the input parameters. These results show that predictable patterns and 3D topography can be spontaneously induced in 2D materials captured on bare, holey substrates. The method also enables electron scatteringmore »studies of precisely aligned, substrate-free strained regions in transmission mode.« less