skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fonteles, Joyce Horn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, there has been a surge in developing curricula and tools that integrate computing (C) into Science, Technology, Engineering, and Math (STEM) programs. These environments foster authentic problem-solving while facilitating students’ concurrent learning of STEM+C content. In our study, we analyzed students’ behaviors as they worked in pairs to create computational kinematics models of object motion. We derived a domain-specific metric from students’ collaborative dialogue that measured how they integrated science and computing concepts into their problem-solving tasks. Additionally, we computed social metrics such as equity and turn-taking based on the students’ dialogue. We identified and characterized students’ planning, enacting, monitoring, and reflecting behaviors as they worked together on their model construction tasks. This study in-vestigates the impact of students’ collaborative behaviors on their performance in STEM+C computational modeling tasks. By analyzing the relationships between group synergy, turn-taking, and equity measures with task performance, we provide insights into how these collaborative behaviors influence students’ ability to construct accurate models. Our findings underscore the importance of synergistic discourse for overall task success, particularly during the enactment, monitoring, and reflection phases. Conversely, variations in equity and turn-taking have a minimal impact on segment-level task performance. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. This paper explores the design of two types of pedagogical agents—teaching and peer—in a collaborative STEM+C learning environment, C2STEM, where high school students learn physics (kinematics) and computing by building computational models that simulate the motion of objects. Through in-depth case study interviews with teachers and students, we identify role-based features for these agents to support collaborative learning in open-ended STEM+C learning environments. We propose twelve design principles—four for teaching agents, four for peer agents, and four shared by both—contributing to foundational guidelines for developing agents that enhance collaborative learning through computational modeling. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026