skip to main content

Search for: All records

Creators/Authors contains: "Fraden, Seth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Self-assembly of complex and functional materials remains a grand challenge in soft material science. Efficient assembly depends on a delicate balance between thermodynamic and kinetic effects, requiring fine-tuning affinities and concentrations of subunits. By contrast, we introduce an assembly paradigm that allows large error-tolerance in the subunit affinity and helps avoid kinetic traps. Our combined experimental and computational approach uses a model system of triangular subunits programmed to assemble intoT= 3 icosahedral capsids comprising 60 units. The experimental platform uses DNA origami to create monodisperse colloids whose three-dimensional geometry is controlled to nanometer precision, with two distinct bonds whose affinities are controlled tokBTprecision, quantified in situ by static light scattering. The computational model uses a coarse-grained representation of subunits, short-ranged potentials, and Langevin dynamics. Experimental observations and modeling reveal that when the bond affinities are unequal, two distincthierarchicalassembly pathways occur, in which the subunits first form dimers in one case and pentamers in another. These hierarchical pathways produce complete capsids faster and are more robust against affinity variation than egalitarian pathways, in which all binding sites have equal strengths. This finding suggests that hierarchical assembly may be a general engineering principle for optimizing self-assembly of complex target structures.

    more » « less
    Free, publicly-accessible full text available February 13, 2025
  2. García-Blanco, Sonia M. ; Cheben, Pavel (Ed.)
  3. Confinement can be used to systematically tame turbulent dynamics occurring in active fluids. Although periodic channels are the simplest geometries to study confinement numerically, the corresponding experimental realizations require closed racetracks. Here, we computationally study 2D active nematics confined to such a geometry—an annulus. By systematically varying the annulus inner radius and channel width, we bridge the behaviors observed in the previously studied asymptotic limits of the annulus geometry: a disk and an infinite channel. We identify new steady-state behaviors, which reveal the influence of boundary curvature and its interplay with confinement. We also show that, below a threshold inner radius, the dynamics are insensitive to the presence of the inner hole. We explain this insensitivity through a simple scaling analysis. Our work sheds further light on design principles for using confinement to control the dynamics of active nematics. 
    more » « less
  4. Self-assembly is one of the most promising strategies for making functional materials at the nanoscale, yet new design principles for making self-limiting architectures, rather than spatially unlimited periodic lattice structures, are needed. To address this challenge, we explore the tradeoffs between addressable assembly and self-closing assembly of a specific class of self-limiting structures: cylindrical tubules. We make triangular subunits using DNA origami that have specific, valence-limited interactions and designed binding angles, and we study their assembly into tubules that have a self-limited width that is much larger than the size of an individual subunit. In the simplest case, the tubules are assembled from a single component by geometrically programming the dihedral angles between neighboring subunits. We show that the tubules can reach many micrometers in length and that their average width can be prescribed through the dihedral angles. We find that there is a distribution in the width and the chirality of the tubules, which we rationalize by developing a model that considers the finite bending rigidity of the assembled structure as well as the mechanism of self-closure. Finally, we demonstrate that the distributions of tubules can be further sculpted by increasing the number of subunit species, thereby increasing the assembly complexity, and demonstrate that using two subunit species successfully reduces the number of available end states by half. These results help to shed light on the roles of assembly complexity and geometry in self-limited assembly and could be extended to other self-limiting architectures, such as shells, toroids, or triply periodic frameworks. 
    more » « less
  5. Coupling between flows and material properties imbues rheological matter with its wide-ranging applicability, hence the excitement for harnessing the rheology of active fluids for which internal structure and continuous energy injection lead to spontaneous flows and complex, out-of-equilibrium dynamics. We propose and demonstrate a convenient, highly tunable method for controlling flow, topology, and composition within active films. Our approach establishes rheological coupling via the indirect presence of fully submersed micropatterned structures within a thin, underlying oil layer. Simulations reveal that micropatterned structures produce effective virtual boundaries within the superjacent active nematic film due to differences in viscous dissipation as a function of depth. This accessible method of applying position-dependent, effective dissipation to the active films presents a nonintrusive pathway for engineering active microfluidic systems. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
    Active nematics are a class of far-from-equilibrium materials characterized by local orientational order of force-generating, anisotropic constitutes. Traditional methods for predicting the dynamics of active nematics rely on hydrodynamic models, which accurately describe idealized flows and many of the steady-state properties, but do not capture certain detailed dynamics of experimental active nematics. We have developed a deep learning approach that uses a Convolutional Long-Short-Term-Memory (ConvLSTM) algorithm to automatically learn and forecast the dynamics of active nematics. We demonstrate our purely data-driven approach on experiments of 2D unconfined active nematics of extensile microtubule bundles, as well as on data from numerical simulations of active nematics. 
    more » « less
  9. We study how confinement transforms the chaotic dynamics of bulk microtubule-based active nematics into regular spatiotemporal patterns. For weak confinements in disks, multiple continuously nucleating and annihilating topological defects self-organize into persistent circular flows of either handedness. Increasing confinement strength leads to the emergence of distinct dynamics, in which the slow periodic nucleation of topological defects at the boundary is superimposed onto a fast procession of a pair of defects. A defect pair migrates toward the confinement core over multiple rotation cycles, while the associated nematic director field evolves from a distinct double spiral toward a nearly circularly symmetric configuration. The collapse of the defect orbits is punctuated by another boundary-localized nucleation event, that sets up long-term doubly periodic dynamics. Comparing experimental data to a theoretical model of an active nematic reveals that theory captures the fast procession of a pair of+1/2defects, but not the slow spiral transformation nor the periodic nucleation of defect pairs. Theory also fails to predict the emergence of circular flows in the weak confinement regime. The developed confinement methods are generalized to more complex geometries, providing a robust microfluidic platform for rationally engineering 2D autonomous flows.

    more » « less