skip to main content


Search for: All records

Creators/Authors contains: "Franklin, Janet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Species distribution and ecological niche models (hereafter SDMs) are popular tools with broad applications in ecology, biodiversity conservation, and environmental science. Many SDM applications require projecting models in environmental conditions non‐analog to those used for model training (extrapolation), giving predictions that may be statistically unsupported and biologically meaningless. We introduce a novel method, Shape, a model‐agnostic approach that calculates the extrapolation degree for a given projection data point by its multivariate distance to the nearest training data point. Such distances are relativized by a factor that reflects the dispersion of the training data in environmental space. Distinct from other approaches, Shape incorporates an adjustable threshold to control the binary discrimination between acceptable and unacceptable extrapolation degrees. We compared Shape's performance to five extrapolation metrics based on their ability to detect analog environmental conditions in environmental space and improve SDMs suitability predictions. To do so, we used 760 virtual species to define different modeling conditions determined by species niche tolerance, distribution equilibrium condition, sample size, and algorithm. All algorithms had trouble predicting species niches. However, we found a substantial improvement in model predictions when model projections were truncated independently of extrapolation metrics. Shape's performance was dependent on extrapolation threshold used to truncate models. Because of this versatility, our approach showed similar or better performance than the previous approaches and could better deal with all modeling conditions and algorithms. Our extrapolation metric is simple to interpret, captures the complex shapes of the data in environmental space, and can use any extrapolation threshold to define whether model predictions are retained based on the extrapolation degrees. These properties make this approach more broadly applicable than existing methods for creating and applying SDMs. We hope this method and accompanying tools support modelers to explore, detect, and reduce extrapolation errors to achieve more reliable models.

    Keywords: environmental novelty, extrapolation, Mahalanobis distance, model prediction, non‐analog environmental data, transferability

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Abstract Aim Rarity and geographic aspects of species distributions mediate their vulnerability to global change. We explore the relationships between species rarity and geography and their exposure to climate and land use change in a biodiversity hotspot. Location California, USA. Taxa One hundred and six terrestrial plants. Methods We estimated four rarity traits: range size, niche breadth, number of habitat patches, and patch isolation; and three geographic traits: mean elevation, topographic heterogeneity, and distance to coast. We used species distribution models to measure species exposure—predicted change in continuous habitat suitability within currently occupied habitat—under climate and land use change scenarios. Using regression models, decision‐tree models and variance partitioning, we assessed the relationships between species rarity, geography, and exposure to climate and land use change. Results Rarity, geography and greenhouse gas emissions scenario explained >35% of variance in climate change exposure and >61% for land use change exposure. While rarity traits (range size and number of habitat patches) were most important for explaining species exposure to climate change, geographic traits (elevation and topographic heterogeneity) were more strongly associated with species' exposure to land use change. Main conclusions Species with restricted range sizes and low topographic heterogeneity across their distributions were predicted to be the most exposed to climate change, while species at low elevations were the most exposed to habitat loss via land use change. However, even some broadly distributed species were projected to lose >70% of their currently suitable habitat due to climate and land use change if they are in geographically vulnerable areas, emphasizing the need to consider both species rarity traits and geography in vulnerability assessments. 
    more » « less
  3. Many plant species are likely to face population decline or even extinction in the coming century, especially those with a limited distribution and inadequate dispersal relative to the projected rates of climate change. The obligate seeding California endemic, Ceanothus perplexans is especially at risk, and depending on how climate change interacts with altered fire regimes in Southern California, certain populations are likely to be more at risk than others. To identify which areas within the species’ range might need conservation intervention, we modeled population dynamics of C. perplexans under various climate and fire regime change scenarios, focusing on spatially explicit patterns in fire frequency. We used a species distribution model to predict the initial range and potential future habitat, while adapting a density-dependent, stage-structured population model to simulate population dynamics. As a fire-adapted obligate seeder, simulated fire events caused C. perplexans seeds to germinate, but also killed all adults in the population. Our simulations showed that the total population would likely decline under any combination of climate change and fire scenario, with the species faring best at an intermediate fire return interval of around 30–50 years. Nevertheless, while the total population declines least with a 30–50 year fire return interval, the effect of individual subpopulations varies depending on spatially explicit patterns in fire simulations. Though climate change is a greater threat to most subpopulations, increased fire frequencies particularly threatened populations in the northwest of the species’ range closest to human development. Subpopulations in the mountainous southern end of the range are likely to face the sharpest declines regardless of fire. Through a combination of species distribution modeling, fire modeling, and spatially explicit demographic simulations, we can better prepare for targeted conservation management of vulnerable species affected by global change. 
    more » « less
  4. Abstract

    Species distribution modelling (SDM), also called environmental or ecological niche modelling, has developed over the last 30 years as a widely used tool used in core areas of biogeography including historical biogeography, studies of diversity patterns, studies of species ranges, ecoregional classification, conservation assessment and projecting future global change impacts. In the 50th anniversary year ofJournal of Biogeography, I reflect on developments in species distribution modelling, illustrate how embedded the methodology has become in all areas of biogeography and speculate on future directions in the field. Challenges to species distribution modelling raised in this journal in 2006 have been addressed to a significant degree. Those challenges are clarification of the niche concept; improved sample design for species occurrence data; model parameterization; predictor selection; assessing model performance and transferability; and integrating correlative and process models of species distributions. SDM is used, often in conjunction with other evidence, to understand past species range dynamics, identify patterns and drivers of biological diversity, identify drivers of species range limits, define and delineate ecoregions, estimate the distributions of biodiversity elements in relation to protected status and to prioritize conservation action, and to forecast species range shifts in response to climate change and other global change scenarios. Areas of progress in SDM that may become more widely accessible and useful tools in biogeography include genetically informed models and community distribution models.

     
    more » « less
  5. Abstract Aim

    Variation in spatial predictions of species' ranges made by various models has been recognized as a significant source of uncertainty for modelling species distributions. Consensus approaches that combine the results of multiple models have been employed to reduce the uncertainty introduced by different algorithms. We evaluate how estimates of habitat suitability, projected using species distribution models (SDMs), varied among different consensus methods relative to the variation introduced by different global climate models (GCMs) and representative concentration pathways (RCPs) used for projection.

    Location

    California Floristic Province (California, US portion).

    Methods

    We modelled the current and future potential distributions of 82 terrestrial plant species, developing model predictions under different combinations of GCMs, RCPs, time periods, dispersal assumptions and SDM consensus methods commonly used to combine different species distribution modelling algorithms. We assessed how each of these factors contributed to the variability in future predictions of species habitat suitability change and aggregate measures of proportional change in species richness. We also related variability in species‐level habitat change to species' attributes.

    Results

    Assuming full dispersal capacity, the variability between habitat predictions made by different consensus methods was higher than the variability introduced by different RCPs and GCMs. The relationships between species' attributes and variability in future habitat predictions depended on the source of uncertainty and dispersal assumptions. However, species with small ranges or low prevalence tended to be associated with high variability in range change forecasts.

    Main Conclusions

    Our results support exploring multiple consensus approaches when considering changes in habitat suitability outside of species' current distributions, especially when projecting species with low prevalence and small range sizes, as these species tend to be of the greatest conservation concern yet produce highly variable model outputs. Differences in vulnerability between diverging greenhouse gas concentration scenarios are most readily observed for end‐of‐century time periods and within species' currently occupied habitats (no dispersal).

     
    more » « less
  6. null (Ed.)
    As the effects of anthropogenic climate change become more severe, several approaches for deliberate climate intervention to reduce or stabilize Earth’s surface temperature have been proposed. Solar radiation modification (SRM) is one potential approach to partially counteract anthropogenic warming by reflecting a small proportion of the incoming solar radiation to increase Earth’s albedo. While climate science research has focused on the predicted climate effects of SRM, almost no studies have investigated the impacts that SRM would have on ecological systems. The impacts and risks posed by SRM would vary by implementation scenario, anthropogenic climate effects, geographic region, and by ecosystem, community, population, and organism. Complex interactions among Earth’s climate system and living systems would further affect SRM impacts and risks. We focus here on stratospheric aerosol intervention (SAI), a well-studied and relatively feasible SRM scheme that is likely to have a large impact on Earth’s surface temperature. We outline current gaps in knowledge about both helpful and harmful predicted effects of SAI on ecological systems. Desired ecological outcomes might also inform development of future SAI implementation scenarios. In addition to filling these knowledge gaps, increased collaboration between ecologists and climate scientists would identify a common set of SAI research goals and improve the communication about potential SAI impacts and risks with the public. Without this collaboration, forecasts of SAI impacts will overlook potential effects on biodiversity and ecosystem services for humanity. 
    more » « less