skip to main content


Search for: All records

Creators/Authors contains: "Fu, Qiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Atmospheric rivers (ARs), intrusions of warm and moist air, can effectively drive weather extremes over the Arctic and trigger subsequent impact on sea ice and climate. What controls the observed multi-decadal Arctic AR trends remains unclear. Here, using multiple sources of observations and model experiments, we find that, contrary to the uniform positive trend in climate simulations, the observed Arctic AR frequency increases by twice as much over the Atlantic sector compared to the Pacific sector in 1981-2021. This discrepancy can be reconciled by the observed positive-to-negative phase shift of Interdecadal Pacific Oscillation (IPO) and the negative-to-positive phase shift of Atlantic Multidecadal Oscillation (AMO), which increase and reduce Arctic ARs over the Atlantic and Pacific sectors, respectively. Removing the influence of the IPO and AMO can reduce the projection uncertainties in near-future Arctic AR trends by about 24%, which is important for constraining projection of Arctic warming and the timing of an ice-free Arctic.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract

    Stratosphere‐Troposphere exchange (STE) of air mass and ozone in ERA5 and Modern Era Retrospective analysis for Research and Application, version 2 (MERRA2) reanalyses from 1980 to 2022 are investigated on their seasonal cycle, annual‐mean climatology, and monthly anomalies smoothed using a 1‐year Lanczos low‐pass filter. We employ a lowermost stratosphere mass budget approach with dynamic isentropic surfaces fitted to tropical tropopause as the upper boundary of lowermost stratosphere. The annual‐mean ozone STEs over the NH extratropics, SH extratropics, tropics, extratropics, and globe in ERA5 are −342, −239, 201, −581, and −380 Tg year−1, respectively, versus −305, −224, 168, −529, −361 Tg year−1from MERRA2. The annual‐mean global ozone STE difference between ERA5 and MERRA2 is dominated by the diabatic heating difference, partly compensated by the ozone concentration difference. There are about 40% (−40%) differences between ERA5 and MERRA2 in global ozone STEs in boreal summer (autumn), mainly due to the difference in seasonal breathing of the lowermost stratosphere ozone mass between reanalyses. The correlation coefficient between ERA5 and MERRA2 global ozone mass STE monthly anomalies is 0.57 and thus ERA5 and MERRA2 can only explain each other's variance by 33%. Multiple linear regression analysis shows that El Niño–Southern Oscillation, quasi‐biennial oscillation, and Brewer‐Dobson circulation explain the variance in the ERA5 (MERRA2) global ozone STE monthly anomalies by 17.3 (5.0), 5.4 (7.2), and 1.0 (3.1)%, respectively. The volcanic aerosol impacts on ozone STEs from ERA5 and MERRA2 have opposite signs and thus are inconclusive. Cautions are therefore needed when using ERA5 and MERRA2 to investigate the STE seasonal cycle and interannual variability.

     
    more » « less
  3. Abstract

    This study investigates changes in stratosphere‐troposphere exchange (STE) of air masses and ozone concentrations from 1960 to 2099 using multiple model simulations from Chemistry Climate Model Initiative (CCMI) under climate change scenario RCP6.0. We employ a lowermost stratosphere mass budget approach with dynamic isentropic surfaces fitted to the tropical tropopause as the upper boundary of lowermost stratosphere. The multi‐model mean (MMM) trends of air mass STEs are all small over all regions, which are within 0.3 (0.1) % decade−1for 1960–2000 (2000–2099). The MMM trends of ozone STE for 1960–2000 are 0.3%, −2.7%, 3.4%, −0.9%, and −2.7% decade−1over the Northern hemisphere (NH) extratropics, Southern hemisphere (SH) extratropics, tropics, extratropics, and globe, respectively. The corresponding ozone STE trends for 2000–2099 are 3.0%, 4.3%, 0.8%, 3.5%, and 4.7% decade−1. Changes in ozone STEs are dominated by ozone concentration changes, driven by climate‐induced changes and ozone‐depleting substance (ODS) changes. For 1960–2000, small changes in ozone STEs in the NH extratropics are due to a cancellation between effects of climate‐induced changes and ODS increases, while the ODS effect dominates in the SH extratropics, leading to a large ozone STE magnitude decrease. Increased ozone transport from tropical troposphere to stratosphere for 1960–2000 is due to increased tropospheric ozone. A decreased global ozone STE magnitude for 1960–2000 was largely caused by ODS‐induced ozone loss that is partly compensated by climate‐induced ozone changes. For 2000–2099, about two‐thirds of global ozone STE magnitude increases are caused by ozone increases in the extratropical lower stratosphere due to climate‐induced changes. The remaining one‐third is caused by ozone recovery due to the phaseout of ODS.

     
    more » « less
  4. In 1967, scientists used a simple climate model to predict that human-caused increases in atmospheric CO 2 should warm Earth’s troposphere and cool the stratosphere. This important signature of anthropogenic climate change has been documented in weather balloon and satellite temperature measurements extending from near-surface to the lower stratosphere. Stratospheric cooling has also been confirmed in the mid to upper stratosphere, a layer extending from roughly 25 to 50 km above the Earth’s surface (S 25 − 50 ). To date, however, S 25 − 50 temperatures have not been used in pattern-based attribution studies of anthropogenic climate change. Here, we perform such a “fingerprint” study with satellite-derived patterns of temperature change that extend from the lower troposphere to the upper stratosphere. Including S 25 − 50 information increases signal-to-noise ratios by a factor of five, markedly enhancing fingerprint detectability. Key features of this global-scale human fingerprint include stratospheric cooling and tropospheric warming at all latitudes, with stratospheric cooling amplifying with height. In contrast, the dominant modes of internal variability in S 25 − 50 have smaller-scale temperature changes and lack uniform sign. These pronounced spatial differences between S 25 − 50 signal and noise patterns are accompanied by large cooling of S 25 − 50 (1 to 2 ° C over 1986 to 2022) and low S 25 − 50 noise levels. Our results explain why extending “vertical fingerprinting” to the mid to upper stratosphere yields incontrovertible evidence of human effects on the thermal structure of Earth’s atmosphere. 
    more » « less
  5. Abstract

    Since 1980, the Arctic surface has warmed four times faster than the global mean. Enhanced Arctic warming relative to the global average warming is referred to as Arctic Amplification (AA). While AA is a robust feature in climate change simulations, models rarely reproduce the observed magnitude of AA, leading to concerns that models may not accurately capture the response of the Arctic to greenhouse gas emissions. Here, we use CMIP6 data to train a machine learning algorithm to quantify the influence of internal variability in surface air temperature trends over both the Arctic and global domains. Application of this machine learning algorithm to observations reveals that internal variability increases the Arctic warming but slows global warming in recent decades, inflating AA since 1980 by 38% relative to the externally forced AA. Accounting for the role of internal variability reconciles the discrepancy between simulated and observed AA.

     
    more » « less
  6. Abstract

    The ERA5 reanalysis with hourly time steps and ∼30 km horizontal resolution resolves a substantially larger fraction of the gravity wave spectrum than its predecessors. Based on a representation of the two-sided zonal wavenumber–frequency spectrum, we show evidence of gravity wave signatures in a suite of atmospheric fields. Cross-spectrum analysis reveals (i) a substantial upward flux of geopotential for both eastward- and westward-propagating waves, (ii) an upward flux of westerly momentum in eastward-propagating waves and easterly momentum in westward-propagating waves, and (iii) anticyclonic rotation of the wind vector with time—all characteristics of vertically propagating gravity and inertio-gravity waves. Two-sided meridional wavenumber–frequency spectra, which are computed along individual meridians and then zonally averaged, exhibit characteristics similar to the spectra computed on latitude circles, indicating that these waves propagate in all directions. The three-dimensional structure of these waves is also documented in composites of the temperature field relative to grid-resolved, wave-induced downwelling events at individual reference grid points along the equator. It is shown that the waves radiate outward and upward relative to the respective reference grid points, and their amplitude decreases rapidly with time. Within the broad continuum of gravity wave phase speeds there are preferred values around ±49 and ±23 m s−1, the former associated with the first baroclinic mode in which the vertical velocity perturbations are of the same sign throughout the depth of the troposphere, and the latter with the second mode in which they are of opposing polarity in the lower and upper troposphere.

     
    more » « less
  7. Abstract The vertical profile of clear-sky radiative cooling places important constraints on the vertical structure of convection and associated clouds. Simple theory using the cooling-to-space approximation is presented to indicate that the cooling rate in the upper troposphere should increase with surface temperature. The theory predicts how the cooling rate depends on lapse rate in an atmosphere where relative humidity remains approximately a fixed function of temperature. Radiative cooling rate is insensitive to relative humidity because of cancellation between the emission and transmission of radiation by water vapor. This theory is tested with one-dimensional radiative transfer calculations and radiative-convective equilibrium simulations. For climate simulations that produce an approximately moist adiabatic lapse rate, the radiative cooling profile becomes increasingly top-heavy with increasing surface temperature. If the temperature profile warms more slowly than a moist adiabatic profile in mid-troposphere, then the cooling rate in the upper troposphere is reduced and that in the lower troposphere is increased. This has important implications for convection, clouds and associated deep and shallow circulations. 
    more » « less