skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Galvez, Enrique J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ramella-Roman, Jessica C; Ma, Hui; Vitkin, I Alex; Elson, Daniel S; Novikova, Tatiana (Ed.)
    We present a method to determine the Mueller matrix of a sample using polarization-entangled photon pairs. One of the photons of a pair goes through a sample and is then subject to a polarization projection measurement. The other photon, which does not go through the sample, is also subject to a polarization projection. The measured quantum correlations are equivalent to polarimetry measurements, where the initial state of the photon going through the sample is determined by the polarization projection on the entangled partner that does not go through the sample. The correspondence with the classical system is acausal because quantum measurements apply to distinct Hilbert spaces. We tested this method with standard optical elements finding excellent agreement with the expectations. Thus it can be used as an alternative to classical Mueller polarimetry for conditions that would be challenging to do otherwise. 
    more » « less
  2. This article presents a table-top experiment that acquires the interference pattern from single photons passing through a double-slit. The experiment is carried out using the heralded, single-photon experimental setup now affordable and fairly common in advanced instructional laboratories. By scanning a single-photon detector on a translation stage, this experiment is implemented without the need of an expensive gate-intensified CCD camera. The authors compare the acquired single-slit and double-slit interference patterns to predicted ones and include a quantum eraser measurement. The experiments are dramatic demonstrations of wave-particle quantum effects and are excellent additions to the collection of single-photon experiments that have been developed over the past several years for the advanced instructional laboratory curriculum. 
    more » « less
  3. De_Stefano, L; Velotta, R; Descrovi, E (Ed.)
    We use spatial light modulation to investigate the diffractive effects of gravitational lensing in the laboratory. Using this new platform for laboratory astrophysics, we can overcome the coherence challenges that prevent the observation of diffraction in astronomical imaging. These studies will inform gravitational lensing of gravitational waves when imaging of gravitational waves becomes available. Our previous work involved studying lensing by a single mass, symmetric and elliptical. This work focuses on the patterns produced by a binary-mass system. We observed rich 2-dimensional interference patterns bounded by caustics. Comparison of experimental results with preliminary theoretical calculations is excellent. 
    more » « less
  4. The Hong–Ou–Mandel interference experiment is a fundamental demonstration of nonclassical interference and a basis for many investigations of quantum information. This experiment involves the interference of two photons reaching a symmetric beamsplitter. When the photons are made indistinguishable in all possible ways, an interference of quantum amplitudes results in both photons always leaving the same beamsplitter output port. Thus, a scan of distinguishable parameters, such as the arrival time difference of the photons reaching the beamsplitter, produces a dip in the coincidences measured at the outputs of the beamsplitter. The main challenge for its implementation as an undergraduate laboratory is the alignment of the photon paths at the beamsplitter. We overcome this difficulty by using a pre-aligned commercial fiber-coupled beamsplitter. In addition, we use waveplates to vary the distinguishability of the photons by their state of polarization. We present a theoretical description at the introductory quantum mechanics level of the two types of experiments, plus a discussion of the apparatus alignment and list of parts needed. 
    more » « less
  5. Andrews, D.; Galvez, EJ; Rubinsztein-Dunlop, H. (Ed.)
    There is interest in using photon entanglement in biomedical applications. In one application, polarization-entangled photons pass through brain tissue. The effect of the brain tissue on the photon entanglement is measured via the decoherence that is imparted on the entangled state. Our current method to obtain a measure of the decoherence involves quantum state tomography, where a minimum of 16 measurements are used in conjunction with tomographic optimization to obtain the density matrix representing the state of the photons. In this work we report on a method to avoid tomographic optimization on behalf of a direct measurement of the elements of the density matrix. We make preliminary comparisons between the two methods. 
    more » « less
  6. The rise of quantum information as a viable technology requires appropriate instructional curricula for preparing a future workforce. Key concepts that are the basis of quantum information involve fundamentals of quantum mechanics, such as superposition, entanglement and measurement. To complement modern initiatives to teach quantum physics to the emerging workforce, lab experiences are needed. We have developed a curriculum of quantum optics experiments to teach quantum mechanics fundamentals and quantum algebra. These laboratories provide hands-on experimentation of optical components on a table-top. We have also created curricular materials, manuals, tutorials, parts and price lists for instructors. Automation of the apparatus offers the fexibility of using the apparatus remotely and for giving access to a greater number of students with a single setup. 
    more » « less
  7. Andrews, David L.; Galvez, Enrique J.; Rubinsztein-Dunlop, Halina (Ed.)
    The similarity between the 2D Helmholtz equation in elliptical coordinates and the Schr¨odinger equation for the simple mechanical pendulum inspires us to use light to mimic this quantum system. When optical beams are prepared in Mathieu modes, their intensity in the Fourier plane is proportional to the quantum mechanical probability for the pendulum. Previous works have produced a two-dimensional pendulum beam that oscillates as a function of time through the superpositions of Mathieu modes with phases proportional to pendulum energies. Here we create a three-dimensional pendulum wavepacket made of a superposition of Helical Mathieu-Gaussian modes, prepared in such a way that the components of the wave-vectors along the propagation direction are proportional to the pendulum energies. The resulting pattern oscillates or rotates as it propagates, in 3D, with the propagation coordinate playing the role of time. We obtained several different propagating beam patterns for the unbound-rotor and the bound-swinging pendulum cases. We measured the beam intensity as a function of the propagation distance. The integrated beam intensity along elliptical angles plays the role of quantum pendulum probabilities. Our measurements are in excellent agreement with numerical simulations. 
    more » « less
  8. Andrews, David L.; Galvez, Enrique J.; Rubinsztein-Dunlop, Halina (Ed.)
    When situations make it diffcult for students to be physically present in the laboratory, there is a need to provide remote instructional offerings. This is a particularly acute problem in upper-level physics laboratories because they involve the use of sophisticated equipment for the investigation of advanced topics. The possibility of automating such experiences presents itself as a possible solution. In this article I present the offering of an automated quantum optics lab for advanced physics students. I do so by automating the laboratory components via actuators and sensors controlled through serial connections. Live images of the laboratory provide visual inspection of the apparatus and sensors. All of these components are connected to a personal computer that students can control by remote access. The experience provides a new paradigm for experimentation, giving students experience on laboratory work with a remote apparatus at fexible times, making the experiment a form of homework assignment. 
    more » « less
  9. Andrews, David L.; Galvez, Enrique J.; Rubinsztein-Dunlop, Halina (Ed.)
    We use a spatial light modulator (SLM) to mimic the e ect of gravity and steer the light from a laser to observe Einstein rings with a laboratory camera. The derived programming of the phase of the SLM follows a logarithmic dependence with impact parameter. As expected, we also observe arcs when the source and lensing object are not in line with the observer. Measurements for distinct parameters are consistent with the expectations. The coherent optical beams that are programmed to follow gravitational lensing trajectories have a transverse mode consistent with Bessel functions, yet they do not exhibit the non-di racting properties of Bessel beams: they expand linearly with the propagation distance. The addition of a vortex phase also produces patterns that coincide with Bessel modes of order given by the topological charge of the vortex. 
    more » « less