Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The composition of the lower continental crust is well studied but poorly understood because of the difficulty of sampling large portions of it. Petrological and geochemical analyses of this deepest portion of the continental crust are limited to the study of high‐grade metamorphic lithologies, such as granulite. In situ lower crustal studies require geophysical experiments to determine regional‐scale phenomena. Since geophysical properties, such as shear wave velocity (Vs), are nonunique among different compositions and temperatures, the most informative lower crustal models combine both geochemical and geophysical knowledge. We explored a combined modeling technique by analyzing the Basin and Range and Colorado Plateau of the United States, a region for which plentiful geochemical and geophysical data are available. By comparing seismic velocity predictions based on composition and thermodynamic principles to ambient noise inversions, we identified three compositional trends in the southwestern United States that reflect three different geologic settings. The Colorado Plateau (thick crust), Northern Basin and Range (medium crust), and Southern Basin and Range (thin crust) have intermediate, intermediate‐mafic, and mafic deep crustal compositions. Identifying the composition of the lower crust depends heavily on its temperature because of the effect it has on rock mineralogy and physical properties. In this region, we see evidence for a lower crust that overall is intermediate‐mafic in composition (53.7
7.2 wt.% SiO ) and notably displays a gradient of decreasing SiO with depth. -
Abstract Temperature distribution at depth is of key importance for characterizing the crust, defining its mechanical behavior and deformation. Temperature can be retrieved by heat flow measurements in boreholes that are sparse, shallow, and have limited reliability, especially in active and recently active areas. Laboratory data and thermodynamic modeling demonstrate that temperature exerts a strong control on the seismic properties of rocks, supporting the hypothesis that seismic data can be used to constrain the crustal thermal structure. We use Rayleigh wave dispersion curves and receiver functions, jointly inverted with a transdimensional Monte Carlo Markov Chain algorithm, to retrieve the
V S andV P /V S within the crust in the Italian peninsula. The high values (>1.9) ofV P /V S suggest the presence of filled‐fluid cracks in the middle and lower crust. Intracrustal discontinuities associated with large values ofV P /V S are interpreted as theα −β quartz transition and used to estimate geothermal gradients. These are in agreement with the temperatures inferred from shear wave velocities and exhibit a behavior consistent with the known tectonic and geodynamic setting of the Italian peninsula. We argue that such methods, based on seismological observables, provide a viable alternative to heat flow measurements for inferring crustal thermal structure.