skip to main content


Title: Lower Crustal Composition in the Southwestern United States
Abstract

The composition of the lower continental crust is well studied but poorly understood because of the difficulty of sampling large portions of it. Petrological and geochemical analyses of this deepest portion of the continental crust are limited to the study of high‐grade metamorphic lithologies, such as granulite. In situ lower crustal studies require geophysical experiments to determine regional‐scale phenomena. Since geophysical properties, such as shear wave velocity (Vs), are nonunique among different compositions and temperatures, the most informative lower crustal models combine both geochemical and geophysical knowledge. We explored a combined modeling technique by analyzing the Basin and Range and Colorado Plateau of the United States, a region for which plentiful geochemical and geophysical data are available. By comparing seismic velocity predictions based on composition and thermodynamic principles to ambient noise inversions, we identified three compositional trends in the southwestern United States that reflect three different geologic settings. The Colorado Plateau (thick crust), Northern Basin and Range (medium crust), and Southern Basin and Range (thin crust) have intermediate, intermediate‐mafic, and mafic deep crustal compositions. Identifying the composition of the lower crust depends heavily on its temperature because of the effect it has on rock mineralogy and physical properties. In this region, we see evidence for a lower crust that overall is intermediate‐mafic in composition (53.77.2 wt.% SiO) and notably displays a gradient of decreasing SiOwith depth.

 
more » « less
Award ID(s):
1650365
NSF-PAR ID:
10449818
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
3
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Debate continues on the amount and distribution of radioactive heat producing elements (i.e., U, Th, and K) in the Earth, with estimates for mantle heat production varying by an order of magnitude. Constraints on the bulk‐silicate Earth's (BSE) radiogenic power also places constraints on overall BSE composition. Geoneutrino detection is a direct measure of the Earth's decay rate of Th and U. The geoneutrino signal has contributions from the local (40%) and global (35%) continental lithosphere and the underlying inaccessible mantle (25%). Geophysical models are combined with geochemical data sets to predict the geoneutrino signal at current and future geoneutrino detectors. We propagated uncertainties, both chemical and physical, through Monte Carlo methods. Estimated total signal uncertainties are on the order of20%, proportionally with geophysical and geochemical inputs contributing30% and70%, respectively. We find that estimated signals, calculated using CRUST2.0, CRUST1.0, and LITHO1.0, are within physical uncertainty of each other, suggesting that the choice of underlying geophysical model will not change results significantly, but will shift the central value by up to15%. Similarly, we see no significant difference between calculated layer abundances and bulk crustal heat production when using these geophysical models. The bulk crustal heat production is calculated as 7  2 TW, which includes an increase of 1 TW in uncertainty relative to previous studies. Combination of our predicted lithospheric signal with measured signals yield an estimated BSE heat production of 21.5  10.4 TW. Future improvements, including uncertainty attribution and near‐field modeling, are discussed.

     
    more » « less
  2. Abstract

    Using data from 186 stations belonging to the USArray Transportable Array, a three‐dimensional shear wave velocity model for the southeastern United States is constructed for the top 180 km by a joint inversion of receiver functions and Rayleigh wave phase velocity dispersion computed from ambient noise and teleseismic earthquake data. The resulting shear wave velocity model and the crustal thickness and Vp/Vs () measurements show a clear spatial correspondence with major surficial geological features. The distinct low velocities observed in the depth range of 0–25 km beneath the eastern Gulf Coastal Plain reflect the thick layer of unconsolidated or poorly consolidated sediments atop the crystalline crust. The low(1.70–1.74) and slow lowermost crustal velocities observed beneath the eastern Southern Appalachian Mountains (including the Carolina Terrane and Inner Piedmont) relative to the adjacent Blue Ridge Mountains and Valley and Ridge can be interpreted by lower crustal delamination followed by relamination. The Osceola intrusive complex in the central Suwannee Terrane has similar crustal characteristics as the eastern Southern Appalachian Mountains and thus can similarly be attributed to crustal delamination/relamination processes. The Grenville Province and adjacent areas possess relatively highvalues which can be attributed to mafic intrusion associated with crustal extension in a recently recognized segments of the eastern arm of the Proterozoic Midcontinent Rift.

     
    more » « less
  3. Abstract

    We prove that a WLD subspace of the spaceconsisting of all bounded, countably supported functions on a set Γ embeds isomorphically intoif and only if it does not contain isometric copies of. Moreover, a subspace ofis constructed that has an unconditional basis, does not embed into, and whose every weakly compact subset is separable (in particular, it cannot contain any isomorphic copies of).

     
    more » « less
  4. Abstract

    In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive.

     
    more » « less
  5. Letdenote the power set of [n], ordered by inclusion, and letdenote the random poset obtained fromby retaining each element fromindependently at random with probabilitypand discarding it otherwise. Givenanyfixed posetFwe determine the threshold for the property thatcontainsFas an induced subposet. We also asymptotically determine the number of copies of a fixed posetFin. Finally, we obtain a number of results on the Ramsey properties of the random poset.

     
    more » « less