skip to main content


Search for: All records

Creators/Authors contains: "Gao, Jidong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract  
    more » « less
    Free, publicly-accessible full text available October 28, 2025
  2. Abstract

    To improve short‐term severe weather forecasts through assimilation of polarimetric radar data (PRD), the use of accurate and efficient forward operators for polarimetric radar variables is required. In this study, a new melting model is proposed to estimate the mixing ratio and number concentration of melting hydrometeor species and incorporated in a set of parameterized polarimetric radar forward operators. The new melting model depends only on the mixing ratio and number concentration of rain and ice species and is characterized by its independence from ambient temperature and its simplicity and ease of linearization. To assess the impact of this newly proposed melting model on the simulated polarimetric radar variables, a real mesoscale convective system is simulated using three double‐moment microphysics schemes. Compared with the output of the original implementation of the parameterized forward operators (PFO_Old) that rely on an “old” melting model which only estimates the mixing ratio of the melting species, the updated implementation with the new melting model (PFO_New) that estimates both the mixing ratio and number concentration of melting species eliminates the very large mass/volume‐weighted mean diameter (Dm) at the bottom of the melting layer and produces more reasonable melting layer signatures for all three double‐moment microphysics schemes that more closely match the corresponding radar observations. This suggests that the new melting model has more reasonable implicit estimates of mixing ratios and number concentrations of melting hydrometeor species than the “old” melting model.

     
    more » « less
    Free, publicly-accessible full text available May 16, 2025
  3. Abstract

    The differential reflectivity (ZDR) column is a notable polarimetric signature related to updrafts in deep moist convection. In this study, pseudo–water vapor (qυ) observations are retrieved from observedZDRcolumns under the assumption that humidity is saturated within the convection whereZDRcolumns are detected, and are then assimilated within the 3DVar framework. The impacts of assimilating pseudo-qυobservations fromZDRcolumns on short-term severe weather prediction are first evaluated for a squall-line case. Radar data analysis indicates that theZDRcolumns are mainly located on the inflow side of the high-reflectivity region. Assimilation of the pseudo-qυobservations leads to an enhancement ofqυwithin the convection, while concurrently reducing humidity in no-rain areas. Sensitivity experiments indicate that a tuned smaller observation error and a shorter horizontal decorrelation scale are optimal for a better assimilation of pseudo-qυfromZDRcolumns, resulting in more stable rain rates during short-term forecasts. Additionally, a 15-min cycling assimilation frequency yields the best performance, providing the most accurate reflectivity forecast in terms of both location and intensity. Analysis of thermodynamic fields reveal that assimilatingZDRcolumns provides more favorable initial conditions for sustaining convection, including sustainable moisture condition, a strong cold pool, and divergent winds near the surface, consequently enhancing reflectivity and precipitation. With the optimal configuration determined from the sensitivity tests, a quantitative evaluation further demonstrates that assimilating the pseudo-qυobservations fromZDRcolumns using the 3DVar method can improve the 0–3-h reflectivity and accumulated precipitation predictions of convective storms.

     
    more » « less
  4. Abstract

    In this study, a new lightning data assimilation (LDA) scheme using Geostationary Lightning Mapper (GLM) flash extent density (FED) is developed and implemented in the National Severe Storms Laboratory Warn‐on‐Forecast System (WoFS). The new LDA scheme first assigns a pseudo relative humidity between the cloud base and a specific layer based on the FED value. Then at each model layer, the pseudo relative humidity is converted to pseudo dewpoint temperature according to the corresponding air temperature. Some sensitivity experiments are performed to investigate how to assign and use GLM/FED in an optimum way. The impact of assimilating this pseudo dewpoint temperature on a short‐term severe weather forecast is preliminarily assessed in this proof‐of‐concept study. A high‐impact weather event in Kansas on 24 May 2021 is used to evaluate the performance of the new scheme on analyses and subsequent short‐term forecasts. The results show that the assimilation of additional FED‐based dewpoint temperature observations along with radar, satellite radiance, and cloud water can improve short‐term (3‐hr) forecast skill in terms of quantitative and qualitative verifications against the observations. The improvement is primarily due to the direct and indirect adjustment of dynamic and thermodynamic conditions through the LDA process. More specifically, the assimilation of FED‐based dewpoint temperature, in addition to the other observations currently used in WoFS, tends to enhance the ingredients required for thunderstorm formation, namely moisture, instability, and lifting mechanism.

     
    more » « less
  5. Abstract

    Raindrop size distributions (DSD) and rain rate have been estimated from polarimetric radar data using different approaches with the accuracy depending on the errors both in the radar measurements and the estimation methods. Herein, a deep neural network (DNN) technique was utilized to improve the estimation of the DSD and rain rate by mitigating these errors. The performance of this approach was evaluated using measurements from a two-dimensional video disdrometer (2DVD) at the Kessler Atmospheric and Ecological Field Station in Oklahoma as ground truth with the results compared against conventional estimation methods for the period 2006–17. Physical parameters (mass-/volume-weighted diameter and liquid water content), rain rate, and polarimetric radar variables (including radar reflectivity and differential reflectivity) were obtained from the DSD data. Three methods—physics-based inversion, empirical formula, and DNN—were applied to two different temporal domains (instantaneous and rain-event average) with three diverse error assumptions (fitting, measurement, and model errors). The DSD retrievals and rain estimates from 18 cases were evaluated by calculating the bias and root-mean-squared error (RMSE). DNN produced the best performance for most cases, with up to a 5% reduction in RMSE when model errors existed. DSD and rain estimated from a nearby polarimetric radar using the empirical and DNN methods were well correlated with the disdrometer observations; the rain-rate estimate bias of the DNN was significantly reduced (3.3% in DNN vs 50.1% in empirical). These results suggest that DNN has advantages over the physics-based and empirical methods in retrieving rain microphysics from radar observations.

     
    more » « less
  6. Abstract

    Assimilating radar reflectivity into convective-scale NWP models remains a challenging topic in radar data assimilation. A primary reason is that the reflectivity forward observation operator is highly nonlinear. To address this challenge, a power transformation function is applied to the WRF Model’s hydrometeor and water vapor mixing ratio variables in this study. Three 3D variational data assimilation experiments are performed and compared for five high-impact weather events that occurred in 2019: (i) a control experiment that assimilates reflectivity using the original hydrometeor mixing ratios as control variables, (ii) an experiment that assimilates reflectivity using power-transformed hydrometeor mixing ratios as control variables, and (iii) an experiment that assimilates reflectivity and retrieved pseudo–water vapor observations using power-transformed hydrometeor and water vapor mixing ratios (qυ) as control variables. Both qualitative and quantitative evaluations are performed for 0–3-h forecasts from the five cases. The analysis and forecast performance in the two experiments with power-transformed mixing ratios is better than the control experiment. Notably, the assimilation of pseudo–water vapor with power-transformedqυas an additional control variable is found to improve the performance of the analysis and short-term forecasts for all cases. In addition, the convergence rate of the cost function minimization for the two experiments that use the power transformation is faster than that of the control experiments.

    Significance Statement

    The effective use of radar reflectivity observations in any data assimilation scheme remains an important research topic because reflectivity observations explicitly include information about hydrometeors and also implicitly include information about the distribution of moisture within storms. However, it is difficult to assimilate reflectivity because the reflectivity forward observation operator is highly nonlinear. This study seeks to identify a more effective way to assimilate reflectivity into a convective-scale NWP model to improve the accuracy of predictions of high-impact weather events.

     
    more » « less
  7. Abstract

    A variational retrieval of rain microphysics from polarimetric radar data (PRD) has been developed through the use of S-band parameterized polarimetric observation operators. Polarimetric observations allow for the optimal retrieval of cloud and precipitation microphysics for weather quantification and data assimilation for convective-scale numerical weather prediction (NWP) by linking PRD to physical parameters. Rain polarimetric observation operators for reflectivity ZH, differential reflectivity ZDR, and specific differential phase KDP were derived for S-band PRD using T-matrix scattering amplitudes. These observation operators link the PRD to the physical parameters of water content W and mass-/volume-weighted diameter Dm for rain, which can be used to calculate other microphysical information. The S-band observation operators were tested using a 1D variational retrieval that uses the (nonlinear) Gauss–Newton method to iteratively minimize the cost function to find an optimal estimate of Dm and W separately for each azimuth of radar data, which can be applied to a plan position indicator (PPI) radar scan (i.e., a single elevation). Experiments on two-dimensional video disdrometer (2DVD) data demonstrated the advantages of including ΦDP observations and using the nonlinear solution rather than the (linear) optimal interpolation (OI) solution. PRD collected by the Norman, Oklahoma (KOUN) WSR-88D on 15 June 2011 were used to successfully test the retrieval method on radar data. The successful variational retrieval from the 2DVD and the radar data demonstrate the utility of the proposed method.

     
    more » « less