skip to main content

Search for: All records

Creators/Authors contains: "Gao, Kunshan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Trichodesmium species, as a group of photosynthetic N2 fixers(diazotrophs), play an important role in the marine biogeochemical cycles ofnitrogen and carbon, especially in oligotrophic waters. How ongoing oceanwarming may interact with light availability to affect Trichodesmium is not yet clear. Wegrew Trichodesmium erythraeum IMS 101 at three temperature levels of 23, 27, and 31∘C undergrowth-limiting and growth-saturating light levels of 50 and 160 µmol quanta m−2 s−1, respectively, for at least 10 generations and thenmeasured physiological performance, including the specific growth rate, N2fixation rate, and photosynthesis. Light availability significantly modulatedthe growth response of Trichodesmium to temperature, with the specific growth ratepeaking at ∼27∘C under the light-saturatingconditions, while growth of light-limited cultures was non-responsive acrossthe tested temperatures (23, 27, and 31∘C). Short-term thermalresponses for N2 fixation indicated that both high growth temperatureand light intensity increased the optimum temperature (Topt) forN2 fixation and decreased its susceptibility to supra-optimaltemperatures (deactivation energy – Eh). Simultaneously, alllight-limited cultures with low Topt and high Eh were unable tosustain N2 fixation during short-term exposure to high temperatures (33–34∘C) that are not lethal for the cells grown underlight-saturating conditions. Our results imply that Trichodesmium spp. growing under lowlight levels while distributed deep in the euphotic zone or under cloudyweather conditions might be lessmore »sensitive to long-term temperature changesthat occur on the timescale of multiple generations but are more susceptible toabrupt (less than one generation time span) temperature changes, such asthose induced by cyclones and heat waves.« less
  2. Abstract. Marine phytoplankton such as bloom-forming, calcite-producingcoccolithophores, are naturally exposed to solar ultraviolet radiation (UVR,280–400nm) in the ocean's upper mixed layers. Nevertheless, the effects ofincreasing carbon dioxide (CO2)-induced ocean acidification and warming have rarelybeen investigated in the presence of UVR. We examined calcification andphotosynthetic carbon fixation performance in the most cosmopolitancoccolithophorid, Emiliania huxleyi, grown under high(1000µatm, HC; pHT: 7.70) and low (400µatm,LC; pHT: 8.02) CO2 levels, at 15C,20C and 24C with or without UVR. The HCtreatment did not affect photosynthetic carbon fixation at 15C,but significantly enhanced it with increasing temperature. Exposure to UVRinhibited photosynthesis, with higher inhibition by UVA (320–395nm) thanUVB (295–320nm), except in the HC and 24C-grown cells, in whichUVB caused more inhibition than UVA. A reduced thickness of the coccolith layerin the HC-grown cells appeared to be responsible for the UV-inducedinhibition, and an increased repair rate of UVA-derived damage in theHC–high-temperature grown cells could be responsible for lowered UVA-induced inhibition.While calcification was reduced with elevated CO2 concentration,exposure to UVB or UVA affected the process differentially, with the formerinhibiting it and the latter enhancing it. UVA-induced stimulationmore »of calcification washigher in the HC-grown cells at 15 and 20C, whereas at24C observed enhancement was not significant. The calcificationto photosynthesis ratio (CalPho ratio) was lower in the HC treatment,and increasing temperature also lowered the value. However, at 20 and24C, exposure to UVR significantly increased the CalPhoratio, especially in HC-grown cells, by up to 100%. This implies thatUVR can counteract the negative effects of the “greenhouse” treatment onthe CalPho ratio; hence, UVR may be a key stressor when considering theimpacts of future greenhouse conditions on E. huxleyi.

    « less