Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 2, 2026
-
As a key component of inherent optical properties (IOPs) in ocean color remote sensing, phytoplankton absorption coefficient (aphy), especially in hyperspectral, greatly enhances our understanding of phytoplankton community composition (PCC). The recent launches of NASA’s hyperspectral missions, such as EMIT and PACE, have generated an urgent need for hyperspectral algorithms for studying phytoplankton. Retrieving aphy from ocean color remote sensing in coastal waters has been extremely challenging due to complex optical properties. Traditional methods often fail under these circumstances, while improved machine-learning approaches are hindered by data scarcity, heterogeneity, and noise from data collection. In response, this study introduces a novel machine learning framework for hyperspectral retrievals of aphy based on the mixture-of-experts (MOEs), named PhA-MOE. Various preprocessing methods for hyperspectral training data are explored, with the combination of robust and logarithmic scalers identified as optimal. The proposed PhA-MOE for aphy prediction is tailored to both past and current hyperspectral missions, including EMIT and PACE. Extensive experiments reveal the importance of data preprocessing and improved performance of PhA-MOE in estimating aphy as well as in handling data heterogeneity. Notably, this study marks the first application of a machine learning–based MOE model to real PACE-OCI hyperspectral imagery, validated using match-up field data. This application enables the exploration of spatiotemporal variations in aphy within an optically complex estuarine environment.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available April 21, 2026
-
Free, publicly-accessible full text available November 22, 2025
-
Free, publicly-accessible full text available April 25, 2026
-
This paper reviews trends in GeoAI research and discusses cutting-edge advances in GeoAI and its roles in accelerating environmental and social sciences. It addresses ongoing attempts to improve the predictability of GeoAI models and recent research aimed at increasing model explainability and reproducibility to ensure trustworthy geospatial findings. The paper also provides reflections on the importance of defining the science of GeoAI in terms of its fundamental principles, theories, and methods to ensure scientific rigor, social responsibility, and lasting impacts.more » « less
-
Free, publicly-accessible full text available January 9, 2026
-
Free, publicly-accessible full text available December 12, 2025
An official website of the United States government

Full Text Available