Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Balazs, Anna (Ed.)Transforming atmospheric water vapor into liquid form can be a way to supply water to arid regions for uses such as drinking water, thermal management, and hydrogen generation. Many current methods rely on solid sorbents that cycle between capture and release at slow rates. We envision a radically different approach where water is transformed and directly captured into a liquid salt solution that is suitable for subsequent distillation or other processing using existing methods. In contrast to other methods utilizing hydrogels as sorbents, we do not store water within hydrogels—we use them as a transport medium. Inspired by nature, we capture atmospheric water through a hydrogel membrane “skin” at an extraordinarily high rate of 5.50 kg m^-2 d^-1 at a low humidity of 35%. and up to 16.9 kg m^-2 d^-1at higher humidities. For a drinking-water application, calculated performance of a hypothetical one-square-meter device shows that water could be supplied to two to three people in arid environments. This work is a significant step toward providing new resources and possibilities to water-scarce regions.more » « less
-
We present a radiative cooling material capable of enhancing albedo while reducing ground surface temperatures beneath fielded bifacial solar panels. Electrospinning a layer of polyacrylonitrile nanofibers, or nanoPAN, onto a polymer-coated silver mirror yields a total solar reflectance of 99 %, an albedo of 0.96, and a thermal emittance of 0.80. The combination of high albedo and high emittance is enabled by wavelength-selective scattering induced by the hierarchical morphology of nanoPAN, which includes both thin fibers and bead-like structures. During outdoor testing, the material outperforms the radiative cooling power of a state-of-the-art control by ∼20 W/m2and boosts the photocurrent produced by a commercial silicon cell by up to 6.4 mA/cm2compared to sand. These experiments validate essential characteristics of a high-albedo radiative-cooling reflector with promising potential applications in thermal and light management of fielded bifacial panels.more » « less
-
From pasta to biological tissues to contact lenses, gel and gel-like materials inherently soften as they swell with water. In dry, low-relative-humidity environments, these materials stiffen as they de-swell with water. Here, we use semi-dilute polymer theory to develop a simple power-law relationship between hydrogel elastic modulus and swelling. From this relationship, we predict hydrogel stiffness or swelling at arbitrary relative humidities. Our close predictions of properties of hydrogels across three different polymer mesh families at varying crosslinking densities and relative humidities demonstrate the validity and generality of our understanding. This predictive capability enables more rapid material discovery and selection for hydrogel applications in varying humidity environments.more » « less
An official website of the United States government
