skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garousi-Nejad, Irene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This resource includes Jupyter Notebooks that combine (merge) model results with observations. There are four folders: - NWM_SnowAssessment: This folder includes codes required for combining model results with observations. It also has an output folder that contains outputs of running five Jupyter Notebooks within the code folder. The order to run the Jupyter Notebooks is as follows. First run Combine_obs_mod_[*].ipynb where [*] is P (precipitation), SWE (snow water equivalent), TAir (air temperature), and FSNO (snow covered area fraction). This combines the model outputs and observations for each variable. Then, run Combine_obs_mod_P_SWE_TAir_FSNO.ipynb. - NWM_Reanalysis: This folder contains the National Water Model version 2 retrospective simulations that were retrieved and pre-processed at SNOTEL sites using https://doi.org/10.4211/hs.3d4976bf6eb84dfbbe11446ab0e31a0a and https://doi.org/10.4211/hs.1b66a752b0cc467eb0f46bda5fdc4b34. - SNOTEL: This folder contains preprocessed SNOTEL observations that were created using https://doi.org/10.4211/hs.d1fe0668734e4892b066f198c4015b06. - GEE: This folder contains MODIS observations that we downloaded using https://doi.org/10.4211/hs.d287f010b2dd48edb0573415a56d47f8. Note that the existing CSV file is the merged file of the downloaded CSV files. 
    more » « less
  2. Abstract The era of ‘big data’ promises to provide new hydrologic insights, and open web‐based platforms are being developed and adopted by the hydrologic science community to harness these datasets and data services. This shift accompanies advances in hydrology education and the growth of web‐based hydrology learning modules, but their capacity to utilize emerging open platforms and data services to enhance student learning through data‐driven activities remains largely untapped. Given that generic equations may not easily translate into local or regional solutions, teaching students to explore how well models or equations work in particular settings or to answer specific problems using real data is essential. This article introduces an open web‐based module developed to advance data‐driven hydrologic process learning, targeting upper level undergraduate and early graduate students in hydrology and engineering. The module was developed and deployed on the HydroLearn open educational platform, which provides a formal pedagogical structure for developing effective problem‐based learning activities. We found that data‐driven learning activities utilizing collaborative open web platforms like CUAHSI HydroShare and JupyterHub to store and run computational notebooks allowed students to access and work with datasets for systems of personal interest and promoted critical evaluation of results and assumptions. Initial student feedback was generally positive, but also highlighted challenges including trouble‐shooting and future‐proofing difficulties and some resistance to programming and new software. Opportunities to further enhance hydrology learning include better articulating the benefits of coding and open web platforms upfront, incorporating additional user‐support tools, and focusing methods and questions on implementing and adapting notebooks to explore fundamental processes rather than tools and syntax. The profound shift in the field of hydrology toward big data, open data services and reproducible research practices requires hydrology instructors to rethink traditional content delivery and focus instruction on harnessing these datasets and practices in the preparation of future hydrologists and engineers. 
    more » « less