skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An open web‐based module developed to advance data‐driven hydrologic process learning
Abstract The era of ‘big data’ promises to provide new hydrologic insights, and open web‐based platforms are being developed and adopted by the hydrologic science community to harness these datasets and data services. This shift accompanies advances in hydrology education and the growth of web‐based hydrology learning modules, but their capacity to utilize emerging open platforms and data services to enhance student learning through data‐driven activities remains largely untapped. Given that generic equations may not easily translate into local or regional solutions, teaching students to explore how well models or equations work in particular settings or to answer specific problems using real data is essential. This article introduces an open web‐based module developed to advance data‐driven hydrologic process learning, targeting upper level undergraduate and early graduate students in hydrology and engineering. The module was developed and deployed on the HydroLearn open educational platform, which provides a formal pedagogical structure for developing effective problem‐based learning activities. We found that data‐driven learning activities utilizing collaborative open web platforms like CUAHSI HydroShare and JupyterHub to store and run computational notebooks allowed students to access and work with datasets for systems of personal interest and promoted critical evaluation of results and assumptions. Initial student feedback was generally positive, but also highlighted challenges including trouble‐shooting and future‐proofing difficulties and some resistance to programming and new software. Opportunities to further enhance hydrology learning include better articulating the benefits of coding and open web platforms upfront, incorporating additional user‐support tools, and focusing methods and questions on implementing and adapting notebooks to explore fundamental processes rather than tools and syntax. The profound shift in the field of hydrology toward big data, open data services and reproducible research practices requires hydrology instructors to rethink traditional content delivery and focus instruction on harnessing these datasets and practices in the preparation of future hydrologists and engineers.  more » « less
Award ID(s):
1725989 1726965 1726667
PAR ID:
10367843
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
35
Issue:
7
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article describes the design, development, and evaluation of an undergraduate learning module that builds students’ skills on how data analysis and numerical modeling can be used to analyze and design water resources engineering projects. The module follows a project-based approach by using a hydrologic restoration project in a coastal basin in south Louisiana, USA. The module has two main phases, a feasibility analysis phase and a hydraulic design phase, and follows an active learning approach where students perform a set of quantitative learning activities that involve extensive data and modeling analyses. The module is designed using open resources, including online datasets, hydraulic simulation models and geographical information system software that are typically used by the engineering industry and research communities. Upon completing the module, students develop skills that involve model formulation, parameter calibration, sensitivity analysis, and the use of data and models to assess and design a hydrologic a proposed hydrologic engineering project. Guided by design-based research framework, the implementation and evaluation of the module focused primarily on assessing students’ perceptions of the module usability and its design attributes, their perceived contribution of the module to their learning, and their overall receptiveness of the module and how it impacts their interest in the subject and future careers. Following an improvement-focused evaluation approach, design attributes that were found most critical to students included the use of user-support resources and self-checking mechanisms. These aspects were identified as key features that facilitate students’ self-learning and independent completion of tasks, while still enriching their learning experiences when using data and modeling-rich applications. Evaluation data showed that the following attributes contributed the most to students’ learning and potential value for future careers: application of modern engineering data analysis; use of real-world hydrologic datasets; and appreciation of uncertainties and challenges imposed by data scarcity. The evaluation results were used to formulate a set of guiding principles on how to design effective and conducive undergraduate learning experiences that adopt technology-enhanced and data and modeling- based strategies, on how to enhance users’ experiences with free and open-source engineering analysis tools, and on how to strike a pedagogical balance between module complexity, student engagement, and flexibility to fit within existing curricula limitations. 
    more » « less
  2. The need to adapt quickly to online or remote instruction has been a challenge for instructors during the COVID pandemic. A common issue instructors face is finding high-quality curricular materials that can enhance student learning by engaging them in solving complex, real-world problems. The current study evaluates a set of 15 web-based learning modules that promote the use of authentic, high-cognitive demand tasks. The modules were developed collaboratively by a group of instructors during a HydroLearn hackathon-workshop program. The modules cover various topics in hydrology and water resources, including physical hydrology, hydraulics, climate change, groundwater flow and quality, fluid mechanics, open channel flow, remote sensing, frequency analysis, data science, and evapotranspiration. The study evaluates the impact of the modules on students’ learning in terms of two primary aspects: understanding of fundamental concepts and improving technical skills. The study uses a practical instrument to measure students’ perceived changes in concepts and technical skills known as the Student Assessment of Learning Gains (SALG) survey. The survey was used at two-time points in this study: before the students participated in the module (pre) and at the conclusion of the module (post). The surveys were modified to capture the concepts and skills aligned with the learning objectives of each module. We calculated the learning gains by examining differences in students’ self-reported understanding of concepts and skills from pre- to post-implementation on the SALG using paired samples t -tests. The majority of the findings were statistically at the 0.05 level and practically significant. As measured by effect size, practical significance is a means for identifying the strength of the conclusions about a group of differences or the relationship between variables in a study. The average effect size in educational research is d = 0.4. The effect sizes from this study [0.45, 1.54] suggest that the modules play an important role in supporting students’ gains in conceptual understanding and technical skills. The evidence from this study suggests that these learning modules can be a promising way to deliver complex subjects to students in a timely and effective manner. 
    more » « less
  3. Responding to the need to teach remotely due to COVID-19, we used readily available computational approaches (and developed associated tutorials (https://mdh-cures-community.squarespace.com/virtual-cures-and-ures)) to teach virtual Course-Based Undergraduate Research Experience (CURE) laboratories that fulfil generally accepted main components of CUREs or Undergraduate Research Experiences (UREs): Scientific Background, Hypothesis Development, Proposal, Experiments, Teamwork, Data Analysis, Conclusions, and Presentation1. We then developed and taught remotely, in three phases, protein-centric CURE activities that are adaptable to virtually any protein, emphasizing contributions of noncovalent interactions to structure, binding and catalysis (an ASBMB learning framework2 foundational concept). The courses had five learning goals (unchanged in the virtual format),focused on i) use of primary literature and bioinformatics, ii) the roles of non-covalent interactions, iii) keeping accurate laboratory notebooks, iv) hypothesis development and research proposal writing, and, v) presenting the project and drawing evidence based conclusions The first phase, Developing a Research Proposal, contains three modules, and develops hallmarks of a good student-developed hypothesis using available literature (PubMed3) and preliminary observations obtained using bioinformatics, Module 1: Using Primary Literature and Data Bases (Protein Data Base4, Blast5 and Clustal Omega6), Module 2: Molecular Visualization (PyMol7 and Chimera8), culminating in a research proposal (Module 3). Provided rubrics guide student expectations. In the second phase, Preparing the Proteins, students prepared necessary proteins and mutants using Module 4: Creating and Validating Models, which leads users through creating mutants with PyMol, homology modeling with Phyre29 or Missense10, energy minimization using RefineD11 or ModRefiner12, and structure validation using MolProbity13. In the third phase, Computational Experimental Approaches to Explore the Questions developed from the Hypothesis, students selected appropriate tools to perform their experiments, chosen from computational techniques suitable for a CURE laboratory class taught remotely. Questions, paired with computational approaches were selected from Modules 5: Exploring Titratable Groups in a Protein using H++14, 6: Exploring Small Molecule Ligand Binding (with SwissDock15), 7: Exploring Protein-Protein Interaction (with HawkDock16), 8: Detecting and Exploring Potential Binding Sites on a Protein (with POCASA17 and SwissDock), and 9: Structure-Activity Relationships of Ligand Binding & Drug Design (with SwissDock, Open Eye18 or the Molecular Operating Environment (MOE)19). All involve freely available computational approaches on publicly accessible web-based servers around the world (with the exception of MOE). Original literature/Journal club activities on approaches helped students suggest tie-ins to wet lab experiments they could conduct in the future to complement their computational approaches. This approach allowed us to continue using high impact CURE teaching, without changing our course learning goals. Quantitative data (including replicates) was collected and analyzed during regular class periods. Students developed evidence-based conclusions and related them to their research questions and hypotheses. Projects culminated in a presentation where faculty feedback was facilitated with the Virtual Presentation platform from QUBES20 These computational approaches are readily adaptable for topics accessible for first to senior year classes and individual research projects (UREs). We used them in both partial and full semester CUREs in various institutional settings. We believe this format can benefit faculty and students from a wide variety of teaching institutions under conditions where remote teaching is necessary. 
    more » « less
  4. Abstract Many have argued that datasets resulting from scientific research should be part of the scholarly record as first class research products. Data sharing mandates from funding agencies and scientific journal publishers along with calls from the scientific community to better support transparency and reproducibility of scientific research have increased demand for tools and support for publishing datasets. Hydrology domain‐specific data publication services have been developed alongside more general purpose and even commercial data repositories. Prominent among these are the Hydrologic Information System (HIS) and HydroShare repositories developed by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI). More broadly, however, multiple organizations have been involved in the practice of data publication in the hydrology domain, each having different roles that have shaped data publication and reuse. Bibliographic and archival approaches to data publication have been advanced, but both have limitations with respect to hydrologic data. Specific recommendations for improving data publication infrastructure, support, and practices to move beyond existing limitations and enable more effective data publication in support of scientific research in the hydrology domain include: improving support for journal article‐based data access and data citation, considering the workflow for data publication, enhancing support for reproducible science, encouraging publication of curated reference data collections, advancing interoperability standards for sharing data and metadata among repositories, developing partnerships with university libraries offering data services, and developing more specific data management plans. While presented in the context of CUAHSI's data repositories and experience, these recommendations are broadly applicable to other domains. This article is categorized under:Science of Water > Methods 
    more » « less
  5. The interaction between climate and the hydrologic cycle is complex due to intricate feedback mechanisms that can have multiple impacts on key hydrologic variables. Under a changing climate, it is becoming increasingly important for undergraduate engineering students to have a better understanding of climate and the hydrologic cycle to ensure future engineering systems are more climate resilient. One way of teaching undergraduate students about these key interactions between climate and the hydrologic cycle is through numerical models that mimic these relationships. However, this is difficult to do in an undergraduate engineering course because these models are complex, and it is not feasible to devote class time and resources to teaching students the knowledge base required to run and analyze these numerical models. In addition, the recent COVID-19 pandemic required a rapid change to flexible teaching methods that can be implemented in online, hybrid, or in-person courses. To overcome these limitations, a backward design and constructive alignment approach was used to develop an active learning module in the HydroLearn framework that allows students to explore the connection between snow processes and streamflow and how this will change under different climate scenarios using numerical models and analysis. This learning module provides learning activities and tools that help the student develop a basic knowledge of snow formation and terminology, snow measurements, numerical models of snow processes, and changes in snow and streamflow under future climate. This module is particularly innovative in that it uses Google Colabs and an interactive user interface to facilitate the students' active learning in an environment that is accessible for all students and is sustainable for continued use and adaptation. This paper describes the approach, best practices and lessons learned in developing and implementing this active learning module in a remote and in-person course. In addition, it presents the results from motivation and student self-assessment surveys and discusses opportunities for improvement and further implementation that have implications for the future of hydrologic education. 
    more » « less