skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Geli, Hatim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Our study evaluated the effectiveness of using eight pathways in combination for a complete to transition from fossil fuels to renewable energy by 2050. These pathways included renewable energy development; improving energy efficiency; increasing energy conservation; carbon taxes; more equitable balancing of human wellbeing and per capita energy use; cap and trade systems; carbon capture, utilization, and storage; and nuclear power development. We used the annual ‘British Petroleum statistical review of world energy 2021’ report as our primary database. Globally, fossil fuels, renewable (primarily hydro, wind and solar), nuclear energy accounted for 83%, 12.6%, and 6.3% of the total energy consumption in 2020. To achieve zero fossil fuel use by 2050, we found that renewable energy production will need to be increased by up to 6-fold or 8-fold if energy demand is held constant at, or increased 50% from, the 2020 energy demand level. Constraining 2050 world energy demand to a 25% increase over the 2020 level, improves the probability of achieving independence from fossil fuels. Improvements in energy efficiency need to accelerate beyond the current rate of ~1.5% per year. Aggressive application of energy conservation policies involving land use and taxation could potentially reduce world energy use by 10% or more by 2050. Our meta-analysis shows that the minimum level of per capita energy consumption that would allow 8 billion people to have a ‘Decent Living Standard’ is on average ~70 GJ per capita per year, which is 93% of the 2020 global average. Developed countries in temperate climates with high vehicle-dependency needed ~120 GJ per capita year−1, whereas equatorial countries with low vehicle-dependency needed 30 GJ per capita year−1. Our meta-analyses indicated replacement of fossil fuels with renewable energy by 2050 may be possible but will require aggressive application of all eight pathways, major lifestyle changes in developed countries, and close cooperation among all countries. 
    more » « less
  2. Brazilian tropical ecosystems in the state of Mato Grosso have experienced significant land use and cover changes during the past few decades due to deforestation and wildfire. These changes can directly affect the mass and energy exchange near the surface and, consequently, evapotranspiration (ET). Characterization of the seasonal patterns of ET can help in understanding how these tropical ecosystems function with a changing climate. The goal of this study was to characterize temporal (seasonal-to-decadal) and spatial patterns in ET over Mato Grosso using remotely sensed products. Ecosystems over areas with limited to no flux towers can be performed using remote sensing products such as NASA’s MOD16A2 ET (MOD16 ET). As the accuracy of this product in tropical ecosystems is unknown, a secondary objective of this study was to evaluate the ability of the MOD16 ET (ETMODIS) to appropriately represent the spatial and seasonal ET patterns in Mato Grosso, Brazil. Actual ET was measured (ETMeasured) using eight flux towers, three in the Amazon, three in the Cerrado, and two in the Pantanal of Mato Grosso. In general, the ETMODIS of all sites had no significant difference from ETMeasured during all analyzed periods, and ETMODIS had a significant moderate to strong correlation with the ETMeasured. The spatial variation of ET had some similarity to the climatology of Mato Grosso, with higher ET in the mid to southern parts of Mato Grosso (Cerrado and Pantanal) during the wet period compared to the dry period. The ET in the Amazon had three seasonal patterns, a higher and lower ET in the wet season compared to the dry season, and minimal to insignificant variation in ET during the wet and dry seasons. The wet season ET in Amazon decreased from the first and second decades, but the ET during the wet and dry season increased in Cerrado and Pantanal in the same period. This study highlights the importance of deepening the study of ET in the state of Mato Grosso due to the land cover and climate change. 
    more » « less
  3. null (Ed.)
    Rangelands provide significant socioeconomic and environmental benefits to humans. However, climate variability and anthropogenic drivers can negatively impact rangeland productivity. The main goal of this study was to investigate structural and productivity changes in rangeland ecosystems in New Mexico (NM), in the southwestern United States of America during the 1984–2015 period. This goal was achieved by applying the time series segmented residual trend analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index (NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Parameter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an increase in productivity, respectively. More than half of the state (55.6%) had insignificant change productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and ever green forest land cover classes, respectively. Significant decrease in productivity was observed in the northeastern and southeastern quadrants of NM while significant increase was observed in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of detected breakpoints coincided with some of NM’s drought events as indicated by the self-calibrated Palmar Drought Severity Index as their number increased since 2000s following a similar increase in drought severity. Some breakpoints were concurrent with some fire events. The combination of these two types of disturbances can partly explain the emergence of breakpoints with degradation in productivity. Using the breakpoint assessment framework developed in this study, the observed degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Productivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant degradation in productivity over the grasslands and shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively. This assessment of NM’s vegetation productivity is critical to support the decision-making process for rangeland management; address challenges related to the sustainability of forage supply and livestock production; conserve the biodiversity of rangelands ecosystems; and increase their resilience. Future analysis should consider the effects of rising temperatures and drought on rangeland degradation and productivity. 
    more » « less
  4. null (Ed.)
    New Mexico (NM) has been identified as the state in the US that will be most adversely impacted by climate change and associated water stress. Roughly 92% of NM is rangeland, most of which is grazed by beef cattle. We calculated the blue (surface and ground) and green (precipitation) water footprints (WF) of NM beef cattle industry (cow-calf, backgrounding, and feedlot). This analysis indicated that the weighted average WF of NM beef cattle was 28,203 L/kgmeat. The majority of the WF was accounted for green water (82%; 23,063 L/kgmeat) used by rangeland forages. Blue water accounted for only 18% (5140 L/kgmeat) of the total beef WF estimate. The relative contribution of green vs. blue water varied significantly among the different phases of beef production. In cow-calf, green water accounted for 99.5% of the WF whereas blue water, accounted for 100% of beef WF during backgrounding and feedlot. Based on our estimate, NM cow-calf operations is about a third or a quarter of the blue water (m3/year) used to produce corn or wheat, and only 5% or less of the water used to produce cotton or hay. In NM, irrigation accounts for about 84% of freshwater use followed by public/domestic use of 10%. Mining, thermo-electric, livestock production, aquaculture, and industrial uses collectively account for the other 6%. 
    more » « less
  5. null (Ed.)
    Drought is a familiar climatic phenomenon in the United States Southwest, with complex human-environment interactions that extend beyond just the physical drought events. Due to continued climate variability and change, droughts are expected to become more frequent and/or severe in the future. Decision-makers are charged with mitigating and adapting to these more extreme conditions and to do that they need to understand the specific impacts drought has on regional and local scales, and how these impacts compare to historical conditions. Tremendous progress in drought monitoring strategies has occurred over the past several decades, with more tools providing greater spatial and temporal resolutions for a variety of variables, including drought impacts. Many of these updated tools can be used to develop improved drought climatologies for decision-makers to use in their drought risk management actions. In support of a Food-Energy-Water (FEW) systems study for New Mexico, this article explores the use of updated drought monitoring tools to analyze data and develop a more holistic drought climatology applicable for New Mexico. Based upon the drought climatology, droughts appear to be occurring with greater frequency and magnitude over the last two decades. This improved drought climatology information, using New Mexico as the example, increases the understanding of the effects of drought on the FEW systems, allowing for better management of current and future drought events and associated impacts. 
    more » « less
  6. Understanding the fluctuations in monthly and annual cattle prices plays a key role in supporting the sustainability of New Mexico’s (NM’s), United States (US), beef cattle industry under variable environmental conditions. The goal of this study was to provide an improved understanding of NM’s beef cattle production systems in terms of prices and production patterns and related drought impacts. The main objectives were to evaluate monthly and annual prices patterns for heifers and steers (cattle) and calves, the relationships between annual cattle prices and inventory and drought, and the effects of drought on ranch net return. Drought events were assessed using the Self-Calibrated Palmer Drought Severity Index (SC-PDSI). The generalized autoregressive conditional heteroscedasticity models and their exponential version were used to investigate the effects of drought and cattle supply on cattle prices, and the effects of drought on ranch net return. Spectral analysis and timeseries decomposition were used to identify the cycles of the annual price and numbers of cattle and calf. Coherence analysis was used to examine the relationships between inventory of cattle classes and drought. The results indicated that prices of cattle and calf usually drop in October through January and peak in April. The inventory of replacement heifers and steers were negatively related to cattle prices, while the inventory of calves was positively related to calf prices. Cattle and calf prices showed negative linear relationships with droughts. Annual cattle and calf prices showed 6- and 10-year cycles, while their inventory showed 6- and 8- year cycles, respectively. Our finding suggested that a rancher can still earn some net return when drought falls within the “Abnormally Dry” category of the US Drought Monitor. However, a rancher with a large herd or ranch size can endure drought more than a rancher with a medium herd or ranch size and reach the breakeven point. Specifically, the net return ($/head) is expected to increase (or decrease) by $62.29, $60.51, and $64.07 per head if the SC-PDSI increase (or decrease) by one unit in all large and medium ranch sizes, respectively. The effects of drought on ranch net return that we identified need further improvements using additional data. Due to NM’s location and the diversity of its rangeland, understanding the response of cattle prices to drought and beef cattle supply based on these findings can be used to help NM’s ranchers and those in other similar regions make informed ranch management decisions. These findings can also support the development of improved understanding of beef cattle production systems regionally. 
    more » « less
  7. Accelerated climate change is a global challenge that is increasingly putting pressure on the sustainability of livestock production systems that heavily depend on rangeland ecosystems. Rangeland management practices have low potential to sequester greenhouse gases. However, mismanagement of rangelands and their conversion into ex-urban, urban, and industrial landscapes can significantly exacerbate the climate change process. Under conditions of more droughts, heat waves, and other extreme weather events, management of risks (climate, biological, financial, political) will probably be more important to the sustainability of ranching than capability to expand output of livestock products in response to rising demand due to population growth. Replacing traditional domestic livestock with a combination of highly adapted livestock and game animals valued for both hunting and meat may be the best strategy on many arid rangelands. Eventually, traditional ranching could become financially unsound across large areas if climate change is not adequately addressed. Rangeland policy, management, and research will need to be heavily focused on the climate change problem. 
    more » « less
  8. null (Ed.)
    Interconnected food, energy, and water (FEW) nexus systems face many challenges to support human well-being (HWB) and maintain resilience, especially in arid and semiarid regions like New Mexico (NM), United States (US). Insufficient FEW resources, unstable economic growth due to fluctuations in prices of crude oil and natural gas, inequitable education and employment, and climate change are some of these challenges. Enhancing the resilience of such coupled socio-environmental systems depends on the efficient use of resources, improved understanding of the interlinkages across FEW system components, and adopting adaptable alternative management strategies. The goal of this study was to develop a framework that can be used to enhance the resilience of these systems. An integrated food, energy, water, well-being, and resilience (FEW-WISE) framework was developed and introduced in this study. This framework consists mainly of five steps to qualitatively and quantitatively assess FEW system relationships, identify important external drivers, integrate FEW systems using system dynamics models, develop FEW and HWB performance indices, and develop a resilience monitoring criterion using a threshold-based approach that integrates these indices. The FEW-WISE framework can be used to evaluate and predict the dynamic behavior of FEW systems in response to environmental and socioeconomic changes using resilience indicators. In conclusion, the derived resilience index can be used to inform the decision-making processes to guide the development of alternative scenario-based management strategies to enhance the resilience of ecological and socioeconomic well-being of vulnerable regions like NM. 
    more » « less
  9. Accurate estimation of land use/land cover (LULC) areas is critical, especially over the semi-arid environments of the southwestern United States where water shortage and loss of rangelands and croplands are affecting the food production systems. This study was conducted within the context of providing an improved understanding of New Mexico’s (NM’s) Food–Energy–Water Systems (FEWS) at the county level. The main goal of this analysis was to evaluate the most important LULC classes for NM’s FEWS by implementing standardized protocols of accuracy assessment and providing bias-corrected area estimates of these classes. The LULC data used in the study was based on National Land Cover Database (NLCD) legacy maps of 1992, 2001, 2006, 2011, and 2016. The analysis was conducted using the cloud-based geospatial processing and modeling tools available from System for Earth Observation Data Access, Processing, and Analysis for Land Monitoring (SEPAL) of the Food and Agricultural Organization. Accuracy assessment, uncertainty analysis, and bias-adjusted area estimates were evaluated by collecting a total of 11,428 reference samples using the Open Foris Collect Earth tool that provided access to high spatial and temporal resolution images available in Google Earth. The reference samples were allocated using a stratified random sampling approach. The results showed an overall accuracy that ranged from 71%–100% in all six study counties. The user’s and producer’s accuracy of most LULC classes were about or above 80%. The obtained bias-adjusted area estimates were higher than those based on pixel counting. The bias-adjusted area estimates simultaneously showed decreasing and increasing trends in grassland and shrubland, respectively in four counties that include Curry, Roosevelt, Lea, and Eddy during the 1992–2016 period. Doña Ana county experienced increasing and decreasing trends in grassland and shrubland areas, respectively. San Juan county experienced decreasing trends in both grassland and shrubland areas. Cultivated cropland areas showed decreasing trends in three counties in southeast NM that rely on groundwater resources including Curry, Roosevelt, and Lea. Similarly, cultivated cropland areas showed increasing trends in the other three counties that rely on surface water or conjunctive use of surface and groundwater resources including San Juan, Doña Ana, and Eddy. The use of SEPAL allowed for efficient assessment and production of more accurate bias-adjusted area estimates compared to using pixel counting. Providing such information can help in understanding the behavior of NM’s food production systems including rangelands and croplands, better monitoring and characterizing NM’s FEWS, and evaluating their behavior under changing environmental and climatic conditions. More effort is needed to evaluate the ability of the NLCD data and other similar products to provide more accurate LULC area estimates at local scales. 
    more » « less
  10. In support of Food-Energy-Water Systems (FEWS) analysis to enhance its sustainability for New Mexico (NM), this study evaluated observed trends in beef cattle population in response to environmental and economic changes. The specific goal was to provide an improved understanding of the behavior of NM’s beef cattle production systems relative to precipitation, temperature, rangeland conditions, production of hay and crude oil, and prices of hay and crude oil. Historical data of all variables were available for the 1973–2017 period. The analysis was conducted using generalized autoregressive conditional heteroscedasticity models. The results indicated declining trends in beef cattle population and prices. The most important predictors of beef cattle population variation were hay production, mean annual hay prices, and mean annual temperature, whereas mean annual temperature, cattle feed sold, and crude oil production were the most important predictors for calf population that weigh under 500 lb. Prices of beef cattle showed a strong positive relationship with crude oil production, mean annual hay prices, rangeland conditions, and mean annual precipitation. However, mean annual temperature had a negative relationship with mean annual beef prices. Variation in mean annual calf prices was explained by hay production, mean annual temperature, and crude oil production. This analysis suggested that NM’s beef cattle production systems were affected mainly and directly by mean annual temperature and crude oil production, and to a lesser extent by other factors studied in this research. 
    more » « less