skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Geng, Yu-Fan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Tropical precipitation change under global warming varies with season. The present study investigates the characteristics and cause of the seasonality in rainfall change. Diagnostically, tropical precipitation change is decomposed into thermodynamic and dynamic components. The thermodynamic component represents the wet-get-wetter effect and its seasonality is due mostly to that in the mean vertical velocity, especially in the monsoon regions. The dynamic component includes the warmer-get-wetter effect due to the spatial variations in sea surface temperature (SST) warming, while the seasonality is due to that of the climatological SST and can be largely reproduced by an atmospheric model forced with the monthly climatological SST plus the annual-mean SST warming pattern. In the eastern equatorial Pacific where the SST warming is locally enhanced; for example, rainfall increases only during the March–May season when the climatological SST is high enough for deep convection. To the extent that the seasonality of tropical precipitation change over oceans arises mostly from that of the climatological SST, the results support the notion that reducing model biases in climatology improves regional rainfall projections. 
    more » « less
  2. Abstract Tropical climate response to greenhouse warming is to first order symmetric about the equator but climate models disagree on the degree of latitudinal asymmetry of the tropical change. Intermodel spread in equatorial asymmetry of tropical climate response is investigated by using 37 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). In the simple simulation with CO2increase at 1% per year but without aerosol forcing, this study finds that intermodel spread in tropical asymmetry is tied to that in the extratropical surface heat flux change related to the Atlantic meridional overturning circulation (AMOC) and Southern Ocean sea ice concentration (SIC). AMOC or Southern Ocean SIC change alters net energy flux at the top of the atmosphere and sea surface in one hemisphere and may induce interhemispheric atmospheric energy transport. The negative feedback of the shallow meridional overturning circulation in the tropics and the positive low cloud feedback in the subtropics are also identified. Our results suggest that reducing the intermodel spread in extratropical change can improve the reliability of tropical climate projections. 
    more » « less