Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Auge, Gabriela (Ed.)Abstract Plant-population recovery across large disturbance areas is often seed-limited. An understanding of seed dispersal patterns is fundamental for determining natural-regeneration potential. However, forecasting seed dispersal rates across heterogeneous landscapes remains a challenge. Our objectives were to determine (i) the landscape patterning of post-disturbance seed dispersal, and underlying sources of variation and the scale at which they operate, and (ii) how the natural seed dispersal patterns relate to a seed augmentation strategy. Vertical seed trapping experiments were replicated across 2 years and five burned and/or managed landscapes in sagebrush steppe. Multi-scale sampling and hierarchical Bayesian models were used to determine the scale of spatial variation in seed dispersal. We then integrated an empirical and mechanistic dispersal kernel for wind-dispersed species to project rates of seed dispersal and compared natural seed arrival to typical post-fire aerial seeding rates. Seeds were captured across the range of tested dispersal distances, up to a maximum distance of 26 m from seed-source plants, although dispersal to the furthest traps was variable. Seed dispersal was better explained by transect heterogeneity than by patch or site heterogeneity (transects were nested within patch within site). The number of seeds captured varied from a modelled mean of ~13 m−2 adjacent to patches of seed-producing plants, to nearly none at 10 m from patches, standardized over a 49-day period. Maximum seed dispersal distances on average were estimated to be 16 m according to a novel modelling approach using a ‘latent’ variable for dispersal distance based on seed trapping heights. Surprisingly, statistical representation of wind did not improve model fit and seed rain was not related to the large variation in total available seed of adjacent patches. The models predicted severe seed limitations were likely on typical burned areas, especially compared to the mean 95–250 seeds per m2 that previous literature suggested were required to generate sagebrush recovery. More broadly, our Bayesian data fusion approach could be applied to other cases that require quantitative estimates of long-distance seed dispersal across heterogeneous landscapes.more » « less
-
Abstract Understanding interactions between environmental stress and genetic variation is crucial to predict the adaptive capacity of species to climate change. Leaf temperature is both a driver and a responsive indicator of plant physiological response to thermal stress, and methods to monitor it are needed. Foliar temperatures vary across leaf to canopy scales and are influenced by genetic factors, challenging efforts to map and model this critical variable. Thermal imagery collected using unoccupied aerial systems (UAS) offers an innovative way to measure thermal variation in plants across landscapes at leaf‐level resolutions. We used a UAS equipped with a thermal camera to assess temperature variation among genetically distinct populations of big sagebrush (Artemisia tridentata), a keystone plant species that is the focus of intensive restoration efforts throughout much of western North America. We completed flights across a growing season in a sagebrush common garden to map leaf temperature relative to subspecies and cytotype, physiological phenotypes of plants, and summer heat stress. Our objectives were to (1) determine whether leaf‐level stomatal conductance corresponds with changes in crown temperature; (2) quantify genetic (i.e., subspecies and cytotype) contributions to variation in leaf and crown temperatures; and (3) identify how crown structure, solar radiation, and subspecies‐cytotype relate to leaf‐level temperature. When considered across the whole season, stomatal conductance was negatively, non‐linearly correlated with crown‐level temperature derived from UAS. Subspecies identity best explained crown‐level temperature with no difference observed between cytotypes. However, structural phenotypes and microclimate best explained leaf‐level temperature. These results show how fine‐scale thermal mapping can decouple the contribution of genetic, phenotypic, and microclimate factors on leaf temperature dynamics. As climate‐change‐induced heat stress becomes prevalent, thermal UAS represents a promising way to track plant phenotypes that emerge from gene‐by‐environment interactions.more » « less
-
Abstract Interactions between neighboring plants are critical for biodiversity maintenance in plant populations and communities. Intraspecific trait variation and genome duplication are common in plant species and can drive eco‐evolutionary dynamics through genotype‐mediated plant–plant interactions. However, few studies have examined how species‐wide intraspecific variation may alter interactions between neighboring plants. We investigate how subspecies and ploidy variation in a genetically diverse species, big sagebrush (Artemisia tridentata), can alter the demographic outcomes of plant interactions. Using a replicated, long‐term common garden experiment that represents range‐wide diversity ofA. tridentata, we ask how intraspecific variation, environment, and stand age mediate neighbor effects on plant growth and survival. Spatially explicit models revealed that ploidy variation and subspecies identity can mediate plant–plant interactions but that the effect size varied in time and across experimental sites. We found that demographic impacts of neighbor effects were strongest during early stages of stand development and in sites with greater growth rates. Within subspecies, tetraploid populations showed greater tolerance to neighbor crowding compared to their diploid variants. Our findings provide evidence that intraspecific variation related to genome size and subspecies identity impacts spatial demography in a genetically diverse plant species. Accounting for intraspecific variation in studies of conspecific density dependence will improve our understanding of how local populations will respond to novel genotypes and biotic interaction regimes. As introduction of novel genotypes into local populations becomes more common, quantifying demographic processes in genetically diverse populations will help predict long‐term consequences of plant–plant interactions.more » « less
An official website of the United States government
