skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ghannam, Khaled"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2(Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSHin the ASL decreases linearly with height regardless of soil moisture conditions,LHandFcdecrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH. The non‐closure does not imply thatFcis always underestimated;Fccan be overestimated over dry soils despite the non‐closure issue.

     
    more » « less
    Free, publicly-accessible full text available January 16, 2025
  2. We investigate the intermittent dynamics of momentum transport and its underlying time scales in the near-wall region of the neutrally stratified atmospheric boundary layer in the presence of a vegetation canopy. This is achieved through an empirical analysis of the persistence time scales (periods between successive zero-crossings) of momentum flux events, and their connection to the ejection–sweep cycle. Using high-frequency measurements from the GoAmazon campaign, spanning multiple heights within and above a dense canopy, the analysis suggests that, when the persistence time scales ( $t_p$ ) of momentum flux events from four different quadrants are separately normalized by $\varGamma _{w}$ (integral time scale of the vertical velocity), their distributions $P(t_p/\varGamma _{w})$ remain height-invariant. This result points to a persistent memory imposed by canopy-induced coherent structures, and to their role as an efficient momentum-transporting mechanism between the canopy airspace and the region immediately above. Moreover, $P(t_p/\varGamma _{w})$ exhibits a power-law scaling at times $t_{p}<\varGamma _{w}$ , with an exponential tail appearing for $t_{p} \geq \varGamma _{w}$ . By separating the flux events based on $t_p$ , we discover that around 80 % of the momentum is transported through the long-lived events ( $t_{p} \geq \varGamma _{w}$ ) at heights immediately above the canopy, while the short-lived ones ( $t_{p} < \varGamma _{w}$ ) only contribute marginally ( $\approx 20\,\%$ ). To explain the role of instantaneous flux amplitudes in momentum transport, we compare the measurements with newly developed surrogate data and establish that the range of time scales involved with amplitude variations in the fluxes tends to increase as one transitions from within to above the canopy. 
    more » « less
  3. Abstract

    Turbulent mixing of scalars within canopies is investigated using a flume experiment with canopy‐like rods of heighthmounted to the channel bed. The data comprised a time sequence of high‐resolution images of a dye recorded in a plane parallel to the bed atz/h= 0.2. Image processing shows that von Kármán wakes shed by canopy drag and downward turbulent transport from upper canopy layers impose distinct scaling regimes on the scalar spectrum. Measures from information theory are then used to explore the dominant directionality of the interaction between small and large scales underlying these two spectral regimes, showing that the arrival of sweeps from aloft establishes an inertial‐range spectrum with forward “information” cascade. In contrast, wake growth with downstream distance leads to persistent upscale transfer (inverse cascade) of scalar variance, which hints at their nondiffusive character and the significance of the stem diameter as an active length scale in canopy turbulence.

     
    more » « less