skip to main content

Search for: All records

Creators/Authors contains: "Ghimire, Bhagirath"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Self-Organized Patterns (SOPs) at plasma-liquid interface in atmospheric pressure plasma discharges refer to the formation of intricate and puzzling structures due to the interplay of electrodynamic and hydrodynamic processes. Studies conducted to date have shown that this phenomenon results in the formation of distinctive patterns such as circular ring, star, gear, dots, spikes, etc., and primarily depends on working gas, electrolyte type, gap distance, current, conductivity, etc. However, an adequate understanding of how these patterns change from one type to another is still not available. This study aims to elucidate the influence of initial liquid conductance ( σ i ) on the temporal evolution of SOPs in liquid-anode discharges. The discharge was generated in a pin-to-liquid anode configuration at a constant helium (He) flow rate of 500 sccm and DC applied voltage of 6 kV at a gap distance of 12 mm. Through the gradual increment of σ i from 1.8 μ S to 4820 μ S, we observe that the trend in the evolution of SOPS takes place as solid discs, spikes, dots, rings, double rings, and stars. The continuous formation of reactive species onto the liquid anode in all conductive solutions results in a decrease in pH, an increase in bulk liquid temperature, and an increase in total dissolved solutes, and these have been confirmed through experimental measurements. Observations using optical emission spectroscopy show that the electrons at the plasma-liquid interface participate in the reduction of cations followed by their excitation & ionization due to which electron density as well as emissions from excited species (mainly hydroxyl radicals & excited nitrogen) decrease with time. Our investigation provides experimental evidence on the presence of cations at the plasma-liquid interface required for SOP formation. 
    more » « less
    Free, publicly-accessible full text available August 7, 2024
  2. Abstract This study reports an experimental comparison of two types of atmospheric pressure plasma jets in terms of their fundamental plasma characteristics and efficacy in bacterial sterilization. The plasma jets are fabricated by inserting a high voltage electrode inside a one-end closed (double DBD plasma jet) or both ends open (single DBD plasma jet) quartz tubes which are further enclosed inside a second quartz tube containing a ground electrode. Both plasma jets are operated in contact with water surface by using a unipolar pulsed DC power supply with helium as the working gas. Results from electrical and time-resolved imaging show that the single DBD configuration induces 3–4 times higher accumulation of charges onto the water surface with significantly faster propagation of plasma bullets. These results are accompanied by the higher discharge intensity as well as stronger emissions from short-lived reactive species which were analyzed through optical emission spectroscopy at the plasma-water interface. The rotational temperature for the single DBD configuration was observed to be higher making it unsafe for direct treatments of sensitive biological targets. These characteristics of the single DBD configuration result in the production of more than two times higher concentration of H 2 O 2 in plasma activated water. Shielding of the HV electrode reduces the plasma potential which in turn reduces the electric field & electron energy at the plasma-water interface. The reduced electric field for the double DBD configuration was lower by ≈463 Td than the single DBD configuration. The bactericidal efficacy of the two configurations of the plasma jets were tested against Escherichia coli , a well studied Gram-negative bacterium that can be commensal and pathogenic in human body. Our results demonstrate that although single DBD plasma jet result in stronger antibacterial effects, the double DBD configuration could be safer. 
    more » « less