skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gkatzelis, Vasilis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the distortion of one-sided and two-sided matching problems on the line. In the one-sided case, n agents need to be matched to n items, and each agent's cost in a matching is their distance from the item they were matched to. We propose an algorithm that is provided only with ordinal information regarding the agents' preferences (each agent's ranking of the items from most- to least-preferred) and returns a matching aiming to minimize the social cost with respect to the agents' true (cardinal) costs. We prove that our algorithm simultaneously achieves the best-possible approximation of 3 (known as distortion) with respect to a variety of social cost measures which include the utilitarian and egalitarian social cost. In the two-sided case, where the agents need be matched to n other agents and both sides report their ordinal preferences over each other, we show that it is always possible to compute an optimal matching. In fact, we show that this optimal matching can be achieved using even less information, and we provide bounds regarding the sufficient number of queries. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Azar, Yossi; Panigrahi, Debmalya (Ed.)
    We provide the first analysis of (deferred acceptance) clock auctions in the learning-augmented framework. These auctions satisfy a unique list of very appealing properties, including obvious strategyproofness, transparency, and unconditional winner privacy, making them particularly well-suited for real-world applications. However, early work that evaluated their performance from a worst-case analysis perspective concluded that no deterministic clock auction with n bidders can achieve a O (log1-∈ n ) approximation of the optimal social welfare for a constant ∈ > 0, even in very simple settings. This overly pessimistic impossibility result heavily depends on the assumption that the designer has no information regarding the bidders’ values. Leveraging the learning-augmented framework, we instead consider a designer equipped with some (machine-learned) advice regarding the optimal solution; this advice can provide useful guidance if accurate, but it may be unreliable. Our main results are learning-augmented clock auctions that use this advice to achieve much stronger performance guarantees whenever the advice is accurate (known as consistency), while maintaining worst-case guarantees even if this advice is arbitrarily inaccurate (known as robustness ). Our first clock auction achieves the best of both worlds: (1 + ∈ )-consistency for any desired constant ∈ > 0 and O (log n ) robustness; we also extend this auction to achieve error tolerance. We then consider a much stronger notion of consistency, which we refer to as consistency∞ and provide an auction that achieves a near-optimal trade-off between consistency∞ and robustness. Finally, using our impossibility results regarding this trade-off, we prove lower bounds on the “cost of smoothness,” i.e., on the robustness that is achievable if we also require that the performance of the auction degrades smoothly as a function of the prediction error. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)
    In the strategic facility location problem, a set of agents report their locations in a metric space and the goal is to use these reports to open a new facility, minimizing an aggregate distance measure from the agents to the facility. However, agents are strategic and may misreport their locations to influence the facility’s placement in their favor. The aim is to design truthful mechanisms, ensuring agents cannot gain by misreporting. This problem was recently revisited through the learning-augmented framework, aiming to move beyond worst-case analysis and design truthful mechanisms that are augmented with (machine-learned) predictions. The focus of this prior work was on mechanisms that are deterministic and augmented with a prediction regarding the optimal facility location. In this paper, we provide a deeper understanding of this problem by exploring the power of randomization as well as the impact of different types of predictions on the performance of truthful learning-augmented mechanisms. We study both the single-dimensional and the Euclidean case and provide upper and lower bounds regarding the achievable approximation of the optimal egalitarian social cost. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  5. We study fair resource allocation with strategic agents. It is well-known that, across multiple fundamental problems in this domain, truthfulness and fairness are incompatible. For example, when allocating indivisible goods, no truthful and deterministic mechanism can guarantee envy-freeness up to one item (EF1), even for two agents with additive valuations. Or, in cake-cutting, no truthful and deterministic mechanism always outputs a proportional allocation, even for two agents with piecewise constant valuations. Our work stems from the observation that, in the context of fair division, truthfulness is used as a synonym for Dominant Strategy Incentive Compatibility (DSIC), requiring that an agent prefers reporting the truth, no matter what other agents report.In this paper, we instead focus on Bayesian Incentive Compatible (BIC) mechanisms, requiring that agents are better off reporting the truth in expectation over other agents' reports. We prove that, when agents know a bit less about each other, a lot more is possible: using BIC mechanisms we can achieve fairness notions that are unattainable by DSIC mechanisms in both the fundamental problems of allocation of indivisible goods and cake-cutting. We prove that this is the case even for an arbitrary number of agents, as long as the agents' priors about each others' types satisfy a neutrality condition. Notably, for the case of indivisible goods, we significantly strengthen the state-of-the-art negative result for efficient DSIC mechanisms, while also highlighting the limitations of BIC mechanisms, by showing that a very general class of welfare objectives is incompatible with Bayesian Incentive Compatibility. Combined, these results give a near-complete picture of the power and limitations of BIC and DSIC mechanisms for the problem of allocating indivisible goods. 
    more » « less
  6. In this work, we introduce an alternative model for the design and analysis of strategyproof mechanisms that is motivated by the recent surge of work in “learning-augmented algorithms.” Aiming to complement the traditional worst-case analysis approach in computer science, this line of work has focused on the design and analysis of algorithms that are enhanced with machine-learned predictions. The algorithms can use the predictions as a guide to inform their decisions, aiming to achieve much stronger performance guarantees when these predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees, even if these predictions are inaccurate (robustness). We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions regarding the private information of the participating agents. To exhibit the important benefits of this approach, we revisit the canonical problem of facility location with strategic agents in the two-dimensional Euclidean space. We study both the egalitarian and utilitarian social cost functions, and we propose new strategyproof mechanisms that leverage predictions to guarantee an optimal trade-off between consistency and robustness. Furthermore, we also prove parameterized approximation results as a function of the prediction error, showing that our mechanisms perform well, even when the predictions are not fully accurate. Funding: The work of E. Balkanski was supported in part by the National Science Foundation [Grants CCF-2210501 and IIS-2147361]. The work of V. Gkatzelis and X. Tan was supported in part by the National Science Foundation [Grant CCF-2210502] and [CAREER Award CCF-2047907]. 
    more » « less
  7. We study the problem of allocating indivisible items to budget-constrained agents, aiming to provide fairness and efficiency guarantees. Specifically, our goal is to ensure that the resulting allocation is envy-free up to any item (EFx) while minimizing the amount of inefficiency that this needs to introduce. We first show that there exist two-agent problem instances for which no EFx allocation is Pareto-efficient. We, therefore, turn to approximation and use the (Pareto-efficient) maximum Nash welfare allocation as a benchmark. For two-agent instances, we provide a procedure that always returns an EFx allocation while achieving the best possible approximation of the optimal Nash social welfare that EFx allocations can achieve. For the more complicated case of three-agent instances, we provide a procedure that guarantees EFx, while achieving a constant approximation of the optimal Nash social welfare for any number of items. 
    more » « less
  8. We study the problem of designing voting rules that take as input the ordinal preferences of n agents over a set of m alternatives and output a single alternative, aiming to optimize the overall happiness of the agents. The input to the voting rule is each agent’s ranking of the alternatives from most to least preferred, yet the agents have more refined (cardinal) preferences that capture the intensity with which they prefer one alternative over another. To quantify the extent to which voting rules can optimize over the cardinal preferences given access only to the ordinal ones, prior work has used the distortion measure, i.e., the worst-case approximation ratio between a voting rule’s performance and the best performance achievable given the cardinal preferences. The work on the distortion of voting rules has been largely divided into two “worlds”: utilitarian distortion and metric distortion. In the former, the cardinal preferences of the agents correspond to general utilities and the goal is to maximize a normalized social welfare. In the latter, the agents’ cardinal preferences correspond to costs given by distances in an underlying metric space and the goal is to minimize the (unnormalized) social cost. Several deterministic and randomized voting rules have been proposed and evaluated for each of these worlds separately, gradually improving the achievable distortion bounds, but none of the known voting rules perform well in both worlds simultaneously. In this work, we prove that one can in fact achieve the “best of both worlds” by designing new voting rules, both deterministic and randomized, that simultaneously achieve near-optimal distortion guarantees in both distortion worlds. We also prove that this positive result does not generalize to the case where the voting rule is provided with the rankings of only the top-t alternatives of each agent, for t < m, and study the extent to which such best-of-both-worlds guarantees can be achieved. 
    more » « less