We design and analyze deterministic and randomized clock auctions for single-parameter domains with downward-closed feasibility constraints, aiming to maximize the social welfare. Clock auctions have been shown to satisfy a list of compelling incentive properties making them a very practical solution for real-world applications, partly because they require very little reasoning from the participating bidders. However, the first results regarding the worst-case performance of deterministic clock auctions from a welfare maximization perspective indicated that they face obstacles even for a seemingly very simple family of instances, leading to a logarithmic inapproximability result; this inapproximability result is information-theoretic and holds even if the auction has unbounded computational power. In this paper we propose a deterministic clock auction that achieves a logarithmic approximation for any downward-closed set system, using black box access to a solver for the underlying optimization problem. This proves that our clock auction is optimal and that the aforementioned family of instances exactly captures the information limitations of deterministic clock auctions. We then move beyond deterministic auctions and design randomized clock auctions that achieve improved approximation guarantees for a generalization of this family of instances, suggesting that the earlier indications regarding the performance of clock auctions may have been overly pessimistic. 
                        more » 
                        « less   
                    This content will become publicly available on January 28, 2026
                            
                            Clock Auctions Augmented with Unreliable Advice
                        
                    
    
            We provide the first analysis of (deferred acceptance) clock auctions in the learning-augmented framework. These auctions satisfy a unique list of very appealing properties, including obvious strategyproofness, transparency, and unconditional winner privacy, making them particularly well-suited for real-world applications. However, early work that evaluated their performance from a worst-case analysis perspective concluded that no deterministic clock auction with n bidders can achieve a O (log1-∈ n ) approximation of the optimal social welfare for a constant ∈ > 0, even in very simple settings. This overly pessimistic impossibility result heavily depends on the assumption that the designer has no information regarding the bidders’ values. Leveraging the learning-augmented framework, we instead consider a designer equipped with some (machine-learned) advice regarding the optimal solution; this advice can provide useful guidance if accurate, but it may be unreliable. Our main results are learning-augmented clock auctions that use this advice to achieve much stronger performance guarantees whenever the advice is accurate (known as consistency), while maintaining worst-case guarantees even if this advice is arbitrarily inaccurate (known as robustness ). Our first clock auction achieves the best of both worlds: (1 + ∈ )-consistency for any desired constant ∈ > 0 and O (log n ) robustness; we also extend this auction to achieve error tolerance. We then consider a much stronger notion of consistency, which we refer to as consistency∞ and provide an auction that achieves a near-optimal trade-off between consistency∞ and robustness. Finally, using our impossibility results regarding this trade-off, we prove lower bounds on the “cost of smoothness,” i.e., on the robustness that is achievable if we also require that the performance of the auction degrades smoothly as a function of the prediction error. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10572543
- Editor(s):
- Azar, Yossi; Panigrahi, Debmalya
- Publisher / Repository:
- Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms,(SODA 2025)
- Date Published:
- Page Range / eLocation ID:
- 2629--2655
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In this work, we introduce an alternative model for the design and analysis of strategyproof mechanisms that is motivated by the recent surge of work in “learning-augmented algorithms.” Aiming to complement the traditional worst-case analysis approach in computer science, this line of work has focused on the design and analysis of algorithms that are enhanced with machine-learned predictions. The algorithms can use the predictions as a guide to inform their decisions, aiming to achieve much stronger performance guarantees when these predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees, even if these predictions are inaccurate (robustness). We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions regarding the private information of the participating agents. To exhibit the important benefits of this approach, we revisit the canonical problem of facility location with strategic agents in the two-dimensional Euclidean space. We study both the egalitarian and utilitarian social cost functions, and we propose new strategyproof mechanisms that leverage predictions to guarantee an optimal trade-off between consistency and robustness. Furthermore, we also prove parameterized approximation results as a function of the prediction error, showing that our mechanisms perform well, even when the predictions are not fully accurate. Funding: The work of E. Balkanski was supported in part by the National Science Foundation [Grants CCF-2210501 and IIS-2147361]. The work of V. Gkatzelis and X. Tan was supported in part by the National Science Foundation [Grant CCF-2210502] and [CAREER Award CCF-2047907].more » « less
- 
            The design of multi-item, multi-bidder auctions involves a delicate balancing act of economic objectives, bidder incentives, and real-world complexities. Efficient auctions, that is, auctions that allocate items to maximize total bidder value, are practically desirable since they promote the most economically beneficial use of resources. Arguably the biggest drawback of efficient auctions, however, is their potential to generate very low revenue. In this work, we show how the auction designer can artificially inject competition into the auction to boost revenue while striving to maintain efficiency. First, we invent a new auction family that enables the auction designer to specify competition in a precise, expressive, and interpretable way. We then introduce a new model of bidder behavior and individual rationality to understand how bidders act when prices are too competitive. Next, under our bidder behavior model, we use our new competitive auction class to derive the globally revenue-optimal efficient auction under two different knowledge models for the auction designer: knowledge of full bidder value distributions and knowledge of bidder value quantiles. Finally, we study a third knowledge model for the auction designer: knowledge of historical bidder valuation data. In this setting we present sample and computationally efficient learning algorithms that find high-revenue probably-efficient competitive auctions from bidder data. Our learning algorithms are instance adaptive and can be run in parallel across bidders, unlike most prior approaches to data-driven auction design.more » « less
- 
            We examine the problem of designing learning-augmented algorithms for metrical task systems (MTS) that exploit machine-learned advice while maintaining rigorous, worst-case guarantees on performance. We propose an algorithm, DART, that achieves this dual objective, providing cost within a multiplicative factor (1+ϵ) of the machine-learned advice (i.e., consistency) while ensuring cost within a multiplicative factor 2O(1/ϵ) of a baseline robust algorithm (i.e., robustness) for any ϵ>0 . We show that this exponential tradeoff between consistency and robustness is unavoidable in general, but that in important subclasses of MTS, such as when the metric space has bounded diameter and in the k -server problem, our algorithm achieves improved, polynomial tradeoffs between consistency and robustness.more » « less
- 
            We study the second-price auction in which bidders have asymmetric information regarding the item’s value. Each bidder’s value for the item depends on a private component and a public component. While each bidder observes their own private component, they hold different and asymmetric information about the public component. We characterize the equilibrium of this auction game and study how the asymmetric bidder information affects their equilibrium bidding strategies. We also discover multiple surprisingly counter-intuitive equilibrium phenomena. For instance, a bidder may be better off if she is less informed regarding the public component. Conversely, a bidder may sometimes be worse off if she obtains more accurate estimation about the auctioned item. Our results suggest that efforts devoted by bidders to improve their value estimations, as widely seen in today’s online advertising auctions, may not always be to their benefit.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
