skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 10, 2025

Title: Randomized Strategic Facility Location with Predictions
In the strategic facility location problem, a set of agents report their locations in a metric space and the goal is to use these reports to open a new facility, minimizing an aggregate distance measure from the agents to the facility. However, agents are strategic and may misreport their locations to influence the facility’s placement in their favor. The aim is to design truthful mechanisms, ensuring agents cannot gain by misreporting. This problem was recently revisited through the learning-augmented framework, aiming to move beyond worst-case analysis and design truthful mechanisms that are augmented with (machine-learned) predictions. The focus of this prior work was on mechanisms that are deterministic and augmented with a prediction regarding the optimal facility location. In this paper, we provide a deeper understanding of this problem by exploring the power of randomization as well as the impact of different types of predictions on the performance of truthful learning-augmented mechanisms. We study both the single-dimensional and the Euclidean case and provide upper and lower bounds regarding the achievable approximation of the optimal egalitarian social cost.  more » « less
Award ID(s):
2047907 2210502
PAR ID:
10572540
Author(s) / Creator(s):
; ;
Editor(s):
Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C
Publisher / Repository:
Advances in Neural Information Processing Systems 37 (NeurIPS 2024)
Date Published:
Volume:
37
Page Range / eLocation ID:
35639--35664
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we introduce an alternative model for the design and analysis of strategyproof mechanisms that is motivated by the recent surge of work in “learning-augmented algorithms.” Aiming to complement the traditional worst-case analysis approach in computer science, this line of work has focused on the design and analysis of algorithms that are enhanced with machine-learned predictions. The algorithms can use the predictions as a guide to inform their decisions, aiming to achieve much stronger performance guarantees when these predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees, even if these predictions are inaccurate (robustness). We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions regarding the private information of the participating agents. To exhibit the important benefits of this approach, we revisit the canonical problem of facility location with strategic agents in the two-dimensional Euclidean space. We study both the egalitarian and utilitarian social cost functions, and we propose new strategyproof mechanisms that leverage predictions to guarantee an optimal trade-off between consistency and robustness. Furthermore, we also prove parameterized approximation results as a function of the prediction error, showing that our mechanisms perform well, even when the predictions are not fully accurate. Funding: The work of E. Balkanski was supported in part by the National Science Foundation [Grants CCF-2210501 and IIS-2147361]. The work of V. Gkatzelis and X. Tan was supported in part by the National Science Foundation [Grant CCF-2210502] and [CAREER Award CCF-2047907]. 
    more » « less
  2. We study the k-facility location games with optional preferences on the line. In the games, each strategic agent has a public location preference on the k facility locations and a private optional preference on the preferred/acceptable set of facilities out of the k facilities. Our goal is to design strategyproof mechanisms to elicit agents’ optional preferences and locate k facilities to minimize the social or maximum cost of agents based on their facility preferences and public agent locations. We consider two variants of the facility location games with optional preferences: the Min variant and the Max variant where the agent’s cost is defined as their distance to the closest acceptable facility and the farthest acceptable facility, respectively. For the Min variant, we present two deterministic strategyproof mechanisms to minimize the maximum cost and social cost with k ≥ 3 facilities, achieving approximation ratios of 3 and 2n+1 respectively. We complement the results by establishing lower bounds of 3/2 and n/4 for the approximation ratios achievable by any deterministic strategyproof mechanisms for the maximum cost and social cost, respectively. We then improve our results in a special setting of the Min variant where there are exactly three facilities and present two deterministic strategyproof mechanisms to minimize the maximum cost and social cost. For the Max variant, we present an optimal deterministic strategyproof mechanism for the maximum cost and a k-approximation deterministic strategyproof mechanism for the social cost. 
    more » « less
  3. Man-made and natural disruptions such as planned constructions on roads, suspensions of bridges, and blocked roads by trees/mudslides/floods can often create obstacles that separate two connected regions. As a result, the traveling and reachability of agents from their respective regions to other regions can be affected. To minimize the impact of the obstacles and maintain agent accessibility, we initiate the problem of constructing a new pathway (e.g., a detour or new bridge) connecting the regions disconnected by obstacles from the mechanism design perspective. In the problem, each agent in their region has a private location and is required to access the other region. The cost of an agent is the distance from their location to the other region via the pathway. Our goal is to design strategyproof mechanisms that elicit truthful locations from the agents and approximately optimize the social or maximum cost of agents by determining locations in the regions for building a pathway. We provide a characterization of all strategyproof and anonymous mechanisms. For the social and maximum costs, we provide upper and lower bounds on the approximation ratios of strategyproof mechanisms. 
    more » « less
  4. We study a variation of facility location problems (FLPs) that aims to improve the accessibility of agents to the facility within the context of mechanism design without money. In such a variation, agents have preferences on the ideal locations of the facility on a real line, and the facility’s location is fixed in advance where (re)locating the facility is not possible due to various constraints (e.g., limited space and construction costs). To improve the accessibility of agents to facilities, existing mechanism design literature in FLPs has proposed to structurally modify the real line (e.g., by adding a new interval) or provide shuttle services between two points when structural modifications are not possible. In this paper, we focus on the latter approach and propose to construct an accessibility range to extend the accessibility of the facility. In the range, agents can receive accommodations (e.g., school buses, campus shuttles, or pickup services) to help reach the facility. Therefore, the cost of each agent is the distance from their ideal location to the facility (possibility) through the range. We focus on designing strategyproof mechanisms that elicit true ideal locations from the agents and construct accessibility ranges (intervals) to approximately minimize the social cost or the maximum cost of agents. For both social and maximum costs, we design group strategyproof mechanisms and strong group strategyproof mechanisms with (asymptotically) tight bounds on the approximation ratios. 
    more » « less
  5. We study the facility location problems (FLPs) with altruistic agents who act to benefit others in their affiliated groups. Our aim is to design mechanisms that elicit true locations from the agents in different overlapping groups and place a facility to serve agents to approximately optimize a given objective based on agents' costs to the facility. Existing studies of FLPs consider myopic agents who aim to minimize their own costs to the facility. We mainly consider altruistic agents with well-motivated group costs that are defined over costs incurred by all agents in their groups. Accordingly, we define Pareto strategyproofness to account for altruistic agents and their multiple group memberships with incomparable group costs. We consider mechanisms satisfying this strategyproofness under various combinations of the planner's objectives and agents' group costs. For each of these settings, we provide upper and lower bounds of approximation ratios of the mechanisms satisfying Pareto strategyproofness. 
    more » « less