There has been a rapid increase in the known fast radio burst (FRB) population, yet the progenitor(s) of these events have remained an enigma. A small number of FRBs have displayed some level of quasi-periodicity in their burst profile, which can be used to constrain their plausible progenitors. However, these studies suffer from the lack of polarization data which can greatly assist in constraining possible FRB progenitors and environments. Here, we report on the detection and characterisation of FRB 20230708A by the Australian Square Kilometre Array Pathfinder (ASKAP), a burst which displays a rich temporal and polarimetric morphology. We model the burst time series to test for the presence of periodicity, scattering and scintillation. We find a potential period of T = 7.267 ms within the burst, but with a low statistical significance of 1.77$\sigma$. Additionally, we model the burst’s time- and frequency-dependent polarization to search for the presence of (relativistic and non-relativistic) propagation effects. We find no evidence to suggest that the high circular polarization seen in FRB 20230708A is generated by Faraday conversion. The majority of the properties of FRB 20230708A are broadly consistent with a (non-millisecond) magnetar model in which the quasi-periodic morphology results from microstructure in the beamed emission, but other explanations are not excluded.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Abstract We present observations from the Gemini Multi-Conjugate Adaptive Optics System/Gemini South Adaptive Optics Imager at Gemini South of five fast radio burst (FRB) host galaxies of FRBs with subarcsecond localizations. We examine and quantify the spatial distributions and locations of the FRBs with respect to their host galaxy light distributions, finding a median host-normalized offset of 2.09 half-light radii (
r e ) and the trend that these FRBs occur in fainter regions of their host galaxies. When combined with the FRB host galaxy sample from Mannings et al., we find that FRBs are statistically distinct from Ca-rich transients in terms of light at the source location and from SGRBs and LGRBs in terms of host-normalized offset. We further find that most FRBs are in regions of elevated local stellar mass surface densities in comparison to the mean global values of their hosts. This, along with the finding that the FRB locations trace the distribution of stellar mass, points toward a possible similarity of the environments of CCSNe and FRBs. We also find that four out of five FRB hosts exhibit distinct spiral arm features, and the bursts originating from such hosts tend to appear on or close to their host’s spiral structure, with a median distance of 0.53 ± 0.27 kpc. With many well-localized FRB detections looming on the horizon, we will be able to better characterize the properties of FRB environments relative to their host galaxies and other transient classes. Such insights may only require us to double the number of FRBs with subarcsecond localizations. -
Abstract The dispersion measure of fast radio bursts (FRBs), arising from the interactions with free electrons along the propagation path, constitutes a unique probe of the cosmic baryon distribution. Their constraining power is further enhanced in combination with observations of the foreground large-scale structure and intervening galaxies. In this work, we present the first constraints on the partition of the cosmic baryons between the intergalactic medium (IGM) and circumgalactic medium (CGM), inferred from the FLIMFLAM spectroscopic survey. In its first data release, the FLIMFLAM survey targeted galaxies in the foreground of eight localized FRBs. Using Bayesian techniques, we reconstruct the underlying ∼Mpc-scale matter density field that is traced by the IGM gas. Simultaneously, deeper spectroscopy of intervening foreground galaxies (at impact parameters
b ⊥≲r 200) and the FRB host galaxies constrains the contribution from the CGM. Applying Bayesian parameter inference to our data and assuming a fiducial set of priors, we infer the IGM cosmic baryon fraction to be and a CGM gas fraction of for 1010M ⊙≲M halo≲ 1013M ⊙halos. The mean FRB host dispersion measure (rest-frame) in our sample is , of which arises from the host galaxy interstellar medium (ISM) and/or the FRB progenitor environment. While our currentf igmandf gasuncertainties are too broad to constrain most galactic feedback models, this result marks the first measurement of the IGM and CGM baryon fractions, as well as the first systematic separation of the FRB host dispersion measure into two components: arising from the halo and from the inner ISM/FRB engine. -
Abstract The Macquart relation describes the correlation between the dispersion measure (DM) of fast radio bursts (FRBs) and the redshift
z of their host galaxies. The scatter of the Macquart relation is sensitive to the distribution of baryons in the intergalactic medium including those ejected from galactic halos through feedback processes. The variance of the distribution in DMs from the cosmic web (DMcosmic) is parameterized by a fluctuation parameterF . In this work, we present a new measurement ofF using 78 FRBs of which 21 have been localized to host galaxies. Our analysis simultaneously fits for the Hubble constantH 0and the DM distribution due to the FRB host galaxy. We find that the fluctuation parameter is degenerate with these parameters, most notablyH 0, and use a uniform prior onH 0to measure at the 3σ confidence interval and a new constraint on the Hubble constant . Using a synthetic sample of 100 localized FRBs, the constraint on the fluctuation parameter is improved by a factor of ∼2. Comparing ourF measurement to simulated predictions from cosmological simulation (IllustrisTNG), we find agreement between redshifts 0.4 <z andz < 2.0. However, atz < 0.4, the simulations underpredictF , which we attribute to the rapidly changing extragalactic DM excess distribution at low redshift. -
Abstract FRB 20220610A is a high-redshift fast radio burst (FRB) that has not been observed to repeat. Here, we present rest-frame UV and optical Hubble Space Telescope observations of the field of FRB 20220610A. The imaging reveals seven extended sources, one of which we identify as the most likely host galaxy with a spectroscopic redshift of
z = 1.017. We spectroscopically confirm three additional sources to be at the same redshift and identify the system as a compact galaxy group with possible signs of interaction among group members. We determine the host of FRB 20220610A to be a star-forming galaxy with a stellar mass of ≈109.7M ⊙, mass-weighted age of ≈2.6 Gyr, and star formation rate (integrated over the last 100 Myr) of ≈1.7M ⊙yr−1. These host properties are commensurate with the star-forming field galaxy population atz ∼ 1 and trace their properties analogously to the population of low-z FRB hosts. Based on estimates of the total stellar mass of the galaxy group, we calculate a fiducial contribution to the observed dispersion measure from the intragroup medium of ≈90–182 pc cm−3(rest frame). This leaves a significant excess of pc cm−3(in the observer frame); further observation will be required to determine the origin of this excess. Given the low occurrence rates of galaxies in compact groups, the discovery of an FRB in one demonstrates a rare, novel environment in which FRBs can occur. As such groups may represent ongoing or future mergers that can trigger star formation, this supports a young stellar progenitor relative to star formation.Free, publicly-accessible full text available March 1, 2025 -
ABSTRACT FRB 20210912A is a fast radio burst (FRB), detected and localized to subarcsecond precision by the Australian Square Kilometre Array Pathfinder. No host galaxy has been identified for this burst despite the high precision of its localization and deep optical and infrared follow-up, to 5σ limits of R = 26.7 mag and Ks = 24.9 mag with the Very Large Telescope. The combination of precise radio localization and deep optical imaging has almost always resulted in the secure identification of a host galaxy, and this is the first case in which the line of sight is not obscured by the Galactic disc. The dispersion measure of this burst, DMFRB = 1233.696 ± 0.006 pc cm−3, allows for a large source redshift of z > 1 according to the Macquart relation. It could thus be that the host galaxy is consistent with the known population of FRB hosts, but is too distant to detect in our observations (z > 0.7 for a host like that of the first repeating FRB source, FRB 20121102A); that it is more nearby with a significant excess in DMhost, and thus dimmer than any known FRB host; or, least likely, that the FRB is truly hostless. We consider each possibility, making use of the population of known FRB hosts to frame each scenario. The fact of the missing host has ramifications for the FRB field: even with high-precision localization and deep follow-up, some FRB hosts may be difficult to detect, with more distant hosts being the less likely to be found. This has implications for FRB cosmology, in which high-redshift detections are valuable.
-
Abstract We present the discovery of an as yet nonrepeating fast radio burst (FRB), FRB 20210117A, with the Australian Square Kilometre Array Pathfinder (ASKAP), as a part of the Commensal Real-time ASKAP Fast Transients Survey. The subarcsecond localization of the burst led to the identification of its host galaxy at
z = 0.214(1). This redshift is much lower than what would be expected for a source dispersion measure (DM) of 729 pc cm−3, given typical contributions from the intergalactic medium and the host galaxy. Optical observations reveal the host to be a dwarf galaxy with little ongoing star formation—very different to the dwarf host galaxies of the known repeating FRBs 20121102A and 20190520B. We find an excess DM contribution from the host and attribute it to the FRB’s local environment. We do not find any radio emission from the FRB site or host galaxy. The low magnetized environment and the lack of a persistent radio source indicate that the FRB source is older than those found in other dwarf host galaxies, establishing the diversity of FRB sources in dwarf galaxy environments. We find our observations to be fully consistent with the “hypernebula” model, where the FRB is powered by an accretion jet from a hyperaccreting black hole. Finally, our high time resolution analysis reveals burst characteristics similar to those seen in repeating FRBs. We encourage follow-up observations of FRB 20210117A to establish any repeating nature. -
Abstract We present a comprehensive catalog of observations and stellar population properties for 23 highly secure host galaxies of fast radio bursts (FRBs). Our sample comprises 6 repeating FRBs and 17 apparent nonrepeaters. We present 82 new photometric and 8 new spectroscopic observations of these hosts. Using stellar population synthesis modeling and employing nonparametric star formation histories (SFHs), we find that FRB hosts have a median stellar mass of ≈109.9
M ⊙, mass-weighted age ≈5.1 Gyr, and ongoing star formation rate ≈1.3M ⊙yr−1but span wide ranges in all properties. Classifying the hosts by degree of star formation, we find that 87% (20 of 23 hosts) are star-forming, two are transitioning, and one is quiescent. The majority trace the star-forming main sequence of galaxies, but at least three FRBs in our sample originate in less-active environments (two nonrepeaters and one repeater). Across all modeled properties, we find no statistically significant distinction between the hosts of repeaters and nonrepeaters. However, the hosts of repeating FRBs generally extend to lower stellar masses, and the hosts of nonrepeaters arise in more optically luminous galaxies. While four of the galaxies with the clearest and most prolonged rises in their SFHs all host repeating FRBs, demonstrating heightened star formation activity in the last ≲100 Myr, one nonrepeating host shows this SFH as well. Our results support progenitor models with short delay channels (i.e., magnetars formed via core-collapse supernova) for most FRBs, but the presence of some FRBs in less-active environments suggests a fraction form through more delayed channels. -
Abstract In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (H
i ), radio surveys to probe the cosmic evolution of Hi in galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep Hi survey, we report the first untargeted detection of an OHM atz > 0.5, LADUMA J033046.20−275518.1 (nicknamed “Nkalakatha”). The host system, WISEA J033046.26−275518.3, is an infrared-luminous radio galaxy whose optical redshiftz ≈ 0.52 confirms the MeerKAT emission-line detection as OH at a redshiftz OH= 0.5225 ± 0.0001 rather than Hi at lower redshift. The detected spectral line has 18.4σ peak significance, a width of 459 ± 59 km s−1, and an integrated luminosity of (6.31 ± 0.18 [statistical] ± 0.31 [systematic]) × 103L ⊙, placing it among the most luminous OHMs known. The galaxy’s far-infrared luminosityL FIR= (1.576 ±0.013) × 1012L ⊙marks it as an ultraluminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step toward a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts.