skip to main content

Search for: All records

Creators/Authors contains: "Gogate, Vibhav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Probabilistic circuits (PCs) such as sum-product networks efficiently represent large multi-variate probability distributions. They are preferred in practice over other probabilistic representations, such as Bayesian and Markov networks, because PCs can solve marginal inference (MAR) tasks in time that scales linearly in the size of the network. Unfortunately, the most probable explanation (MPE) task and its generalization, the marginal maximum-a-posteriori (MMAP) inference task remain NP-hard in these models. Inspired by the recent work on using neural networks for generating near-optimal solutions to optimization problems such as integer linear programming, we propose an approach that uses neural networks to approximate MMAP inference in PCs. The key idea in our approach is to approximate the cost of an assignment to the query variables using a continuous multilinear function and then use the latter as a loss function. The two main benefits of our new method are that it is self-supervised, and after the neural network is learned, it requires only linear time to output a solution. We evaluate our new approach on several benchmark datasets and show that it outperforms three competing linear time approximations: max-product inference, max-marginal inference, and sequential estimation, which are used in practice to solve MMAP tasks in PCs.

    more » « less
    Free, publicly-accessible full text available March 25, 2025
  2. While EXplainable Artificial Intelligence (XAI) approaches aim to improve human-AI collaborative decision-making by improving model transparency and mental model formations, experiential factors associated with human users can cause challenges in ways system designers do not anticipate. In this paper, we first showcase a user study on how anchoring bias can potentially affect mental model formations when users initially interact with an intelligent system and the role of explanations in addressing this bias. Using a video activity recognition tool in cooking domain, we asked participants to verify whether a set of kitchen policies are being followed, with each policy focusing on a weakness or a strength. We controlled the order of the policies and the presence of explanations to test our hypotheses. Our main finding shows that those who observed system strengths early-on were more prone to automation bias and made significantly more errors due to positive first impressions of the system, while they built a more accurate mental model of the system competencies. On the other hand, those who encountered weaknesses earlier made significantly fewer errors since they tended to rely more on themselves, while they also underestimated model competencies due to having a more negative first impression of the model. Motivated by these findings and similar existing work, we formalize and present a conceptual model of user’s past experiences that examine the relations between user’s backgrounds, experiences, and human factors in XAI systems based on usage time. Our work presents strong findings and implications, aiming to raise the awareness of AI designers towards biases associated with user impressions and backgrounds. 
    more » « less
  3. null (Ed.)
  4. Recently there has been growing interest in learning probabilistic models that admit poly-time inference called tractable probabilistic models from data. Although they generalize poorly as compared to intractable models, they often yield more accurate estimates at prediction time. In this paper, we seek to further explore this trade-off between generalization performance and inference accuracy by proposing a novel, partially tractable representation called cutset Bayesian networks (CBNs). The main idea in CBNs is to partition the variables into two subsets X and Y, learn a (intractable) Bayesian network that represents P(X) and a tractable conditional model that represents P(Y|X). The hope is that the intractable model will help improve generalization while the tractable model, by leveraging Rao-Blackwellised sampling which combines exact inference and sampling, will help improve the prediction accuracy. To compactly model P(Y|X), we introduce a novel tractable representation called conditional cutset networks (CCNs) in which all conditional probability distributions are represented using calibrated classifiers—classifiers which typically yield higher quality probability estimates than conventional classifiers. We show via a rigorous experimental evaluation that CBNs and CCNs yield more accurate posterior estimates than their tractable as well as intractable counterparts.

    more » « less
  5. We consider the problem of computing r-th order statistics, namely finding an assignment having rank r in a probabilistic graphical model. We show that the problem is NP-hard even when the graphical model has no edges (zero-treewidth models) via a reduction from the partition problem. We use this reduction, specifically a pseudo-polynomial time algorithm for number partitioning to yield a pseudo-polynomial time approximation algorithm for solving the r-th order statistics problem in zero- treewidth models. We then extend this algorithm to arbitrary graphical models by generalizing it to tree decompositions, and demonstrate via experimental evaluation on various datasets that our proposed algorithm is more accurate than sampling algorithms.

    more » « less
  6. We address the problem of scaling up local-search or sampling-based inference in Markov logic networks (MLNs) that have large shared sub-structures but no (or few) tied weights. Such untied MLNs are ubiquitous in practical applications. However, they have very few symmetries, and as a result lifted inference algorithms--the dominant approach for scaling up inference--perform poorly on them. The key idea in our approach is to reduce the hard, time-consuming sub-task in sampling algorithms, computing the sum of weights of features that satisfy a full assignment, to the problem of computing a set of partition functions of graphical models, each defined over the logical variables in a first-order formula. The importance of this reduction is that when the treewidth of all the graphical models is small, it yields an order of magnitude speedup. When the treewidth is large, we propose an over-symmetric approximation and experimentally demonstrate that it is both fast and accurate. 
    more » « less