skip to main content

Search for: All records

Creators/Authors contains: "Gokhale, Pranav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Variational Quantum Algorithms (VQA) are one of the most promising candidates for near-term quantum advantage. Traditionally, these algorithms are parameterized by rotational gate angles whose values are tuned over iterative execution on quantum machines. The iterative tuning of these gate angle parameters make VQAs more robust to a quantum machine’s noise profile. However, the effect of noise is still a significant detriment to VQA’s target estimations on real quantum machines — they are far from ideal. Thus, it is imperative to employ effective error mitigation strategies to improve the fidelity of these quantum algorithms on near-term machines.While existing error mitigation techniques built from theory do provide substantial gains, the disconnect between theory and real machine execution characteristics limit the scope of these improvements. Thus, it is critical to optimize mitigation techniques to explicitly suit the target application as well as the noise characteristics of the target machine.We propose VAQEM, which dynamically tailors existing error mitigation techniques to the actual, dynamic noisy execution characteristics of VQAs on a target quantum machine. We do so by tuning specific features of these mitigation techniques similar to the traditional rotation angle parameters -by targeting improvements towards a specific objective function which represents the VQAmore »problem at hand. In this paper, we target two types of error mitigation techniques which are suited to idle times in quantum circuits: single qubit gate scheduling and the insertion of dynamical decoupling sequences. We gain substantial improvements to VQA objective measurements — a mean of over 3x across a variety of VQA applications, run on IBM Quantum machines.More importantly, while we study two specific error mitigation techniques, the proposed variational approach is general and can be extended to many other error mitigation techniques whose specific configurations are hard to select a priori. Integrating more mitigation techniques into the VAQEM framework in the future can lead to further formidable gains, potentially realizing practically useful VQA benefits on today’s noisy quantum machines.« less
    Free, publicly-accessible full text available April 1, 2023
  2. As the popularity of quantum computing continues to grow, quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis of resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing. This paper is a first-of-its-kind academic study, analyzing various trends in job execution and resources consumption / utilization on quantum cloud systems. We focus on IBM Quantum systems and analyze characteristics over a two year period, encompassing over 6000 jobs which contain over 600,000 quantum circuit executions and correspond to almost 10 billion “shots” or trials over 20+ quantum machines. Specifically, we analyze trends focused on, but not limited to, execution times on quantum machines, queuing/waiting times in the cloud, circuit compilation times, machine utilization, as well as the impact of job and machine characteristics on all of these trends. Our analysis identifies several similarities and differences with classical HPC cloud systems. Based onmore »our insights, we make recommendations and contributions to improve the management of resources and jobs on future quantum cloud systems.« less
  3. Simulating the time evolution of a physical system at quantum mechanical levels of detail - known as Hamiltonian Simulation (HS) - is an important and interesting problem across physics and chemistry. For this task, algorithms that run on quantum computers are known to be exponentially faster than classical algorithms; in fact, this application motivated Feynman to propose the construction of quantum computers. Nonetheless, there are challenges in reaching this performance potential. Prior work has focused on compiling circuits (quantum programs) for HS with the goal of maximizing either accuracy or gate cancellation. Our work proposes a compilation strategy that simultaneously advances both goals. At a high level, we use classical optimizations such as graph coloring and travelling salesperson to order the execution of quantum programs. Specifically, we group together mutually commuting terms in the Hamiltonian (a matrix characterizing the quantum mechanical system) to improve the accuracy of the simulation. We then rearrange the terms within each group to maximize gate cancellation in the final quantum circuit. These optimizations work together to improve HS performance and result in an average 40% reduction in circuit depth. This work advances the frontier of HS which in turn can advance physical and chemical modelingmore »in both basic and applied sciences.« less
  4. Instruction scheduling is a key compiler optimization in quantum computing, just as it is for classical computing. Current schedulers optimize for data parallelism by allowing simultaneous execution of instructions, as long as their qubits do not overlap. However, on many quantum hardware platforms, instructions on overlapping qubits can be executed simultaneously through global interactions. For example, while fan-out in traditional quantum circuits can only be implemented sequentially when viewed at the logical level, global interactions at the physical level allow fan-out to be achieved in one step. We leverage this simultaneous fan-out primitive to optimize circuit synthesis for NISQ (Noisy Intermediate-Scale Quantum) workloads. In addition, we introduce novel quantum memory architectures based on fan-out.Our work also addresses hardware implementation of the fan-out primitive. We perform realistic simulations for trapped ion quantum computers. We also demonstrate experimental proof-of-concept of fan-out with superconducting qubits. We perform depth (runtime) and fidelity estimation for NISQ application circuits and quantum memory architectures under realistic noise models. Our simulations indicate promising results with an asymptotic advantage in runtime, as well as 7–24% reduction in error.
  5. As the popularity of quantum computing continues to grow, efficient quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis and optimization of job / resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing.This paper proposes optimized adaptive job scheduling to the quantum cloud taking note of primary characteristics such as queuing times and fidelity trends across machines, as well as other characteristics such as quality of service guarantees and machine calibration constraints. Key components of the proposal include a) a prediction model which predicts fidelity trends across machine based on compiled circuit features such as circuit depth and different forms of errors, as well as b) queuing time prediction for each machine based on execution time estimations.Overall, this proposal is evaluated on simulated IBM machines across a diverse set of quantum applications and system loading scenarios, and is able to reduce waitmore »times by over 3x and improve fidelity by over 40% on specific usecases, when compared to traditional job schedulers.« less
  6. null (Ed.)
    Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform k-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical k-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard k-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over k-means on the entire data set—appears to be challenging.
  7. Quantum computers are traditionally operated by programmers at the granularity of a gate-based instruction set. However, the actual device-level control of a quantum computer is performed via analog pulses. We introduce a compiler that exploits direct control at this microarchitectural level to achieve significant improvements for quantum programs. Unlike quantum optimal control, our approach is bootstrapped from existing gate calibrations and the resulting pulses are simple. Our techniques are applicable to any quantum computer and realizable on current devices. We validate our techniques with millions of experimental shots on IBM quantum computers, controlled via the OpenPulse control interface. For representative benchmarks, our pulse control techniques achieve both 1.6x lower error rates and 2x faster execution time, relative to standard gate-based compilation. These improvements are critical in the near-term era of quantum computing, which is bottlenecked by error rates and qubit lifetimes.
  8. One of the key challenges in current Noisy Intermediate-Scale Quantum (NISQ) computers is to control a quantum system with high-fidelity quantum gates. There are many reasons a quantum gate can go wrong -- for superconducting transmon qubits in particular, one major source of gate error is the unwanted crosstalk between neighboring qubits due to a phenomenon called frequency crowding. We motivate a systematic approach for understanding and mitigating the crosstalk noise when executing near-term quantum programs on superconducting NISQ computers. We present a general software solution to alleviate frequency crowding by systematically tuning qubit frequencies according to input programs, trading parallelism for higher gate fidelity when necessary. The net result is that our work dramatically improves the crosstalk resilience of tunable-qubit, fixed-coupler hardware, matching or surpassing other more complex architectural designs such as tunable-coupler systems. On NISQ benchmarks, we improve worst-case program success rate by 13.3x on average, compared to existing traditional serialization strategies.