skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Griffin, Casey B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Due to differences between air and debris motions, debris centrifuging creates bias in wind estimates based on Doppler velocities and radar wind retrievals in tornadoes. Anomalous radial divergence, azimuthal wind underestimation, and vertical velocity bias associated with debris centrifuging can lead to erroneous interpretations of tornado intensity and structure from radar data. A novel spectral velocity correction technique is developed to reduce bias by identifying rain and debris motion in radar signals using dual-polarization spectral density estimation and fuzzy logic classification. This technique successfully improves Doppler velocity estimates in simulated S-band polarimetric time series data, although debris concentration modulates both the magnitude and correctability of velocity bias. Large bias magnitudes associated with high debris concentrations are the most difficult to fully correct using this technique, especially at low elevation angles and near the center of the tornado. However, the magnitudes of corrections applied are proportional to the original bias magnitudes, suggesting that the technique performs consistently across low and high debris concentrations. Spectral correction results in an overall 84% reduction in bias in simulations. The spectral correction technique is also applied to dual-polarization S-band radar observations of the 20 May 2013 Moore, Oklahoma tornado. Overall increases in Doppler velocity magnitudes, especially at lower elevation angles, imply that spectral correction can successfully reduce centrifuging bias in observed Doppler velocities. 
    more » « less
    Free, publicly-accessible full text available June 12, 2026
  2. This study utilizes data collected by the University of Oklahoma Advanced Radar Research Center’s Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) C-band radar as well as the federal KTLX and KOUN WSR-88D S-band radars to study a supercell that simultaneously produced a long-track EF-4 tornado and an EF-2 landspout tornado (EF indicates the enhanced Fujita scale) near Norman, Oklahoma, on 10 May 2010. Contrasting polarimetric characteristics of two tornadoes over similar land cover but with different intensities are documented. Also, the storm-scale sedimentation of debris within the supercell is investigated, which includes observations of rotation and elongation of a tornadic debris signature with height. A dual-wavelength comparison of debris at S and C bands is performed. These analyses indicate that lofted debris within the tornado was larger than debris located outside the damage path of the tornado and that debris size outside the tornado increased with height, likely as the result of centrifuging. Profiles of polarimetric variables were observed to become more vertically homogeneous with time. 
    more » « less
  3. On 27 May 2015, the Atmospheric Imaging Radar (AIR) collected high-temporal resolution radar observations of an EF-2 tornado near Canadian, Texas. The AIR is a mobile, X-band, imaging radar that uses digital beamforming to collect simultaneous RHI scans while steering mechanically in azimuth to obtain rapid-update weather data. During this deployment, 20°-by-80° (elevation × azimuth) sector volumes were collected every 5.5 s at ranges as close as 6 km. The AIR captured the late-mature and decaying stages of the tornado. Early in the deployment, the tornado had a radius of maximum winds (RMW) of 500 m and exhibited maximum Doppler velocities near 65 m s−1. This study documents the rapid changes associated with the dissipation stages of the tornado. A 10-s resolution time–height investigation of vortex tilt and differential velocity [Formula: see text] is presented and illustrates an instance of upward vortex intensification as well as downward tornado decay. Changes in tornado intensity over periods of less than 30 s coincided with rapid changes in tornado diameter. At least two small-scale vortices were observed being shed from the tornado during a brief weakening period. A persistent layer of vortex tilt was observed near the level of free convection, which separated two layers with contrasting modes of tornado decay. Finally, the vertical cross correlation of vortex intensity reveals that apart from the brief instances of upward vortex intensification and downward decay, tornado intensity was highly correlated throughout the observation period. 
    more » « less