skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Griffiths, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Does language help make sense of the visual world? How important is it to actually see the world rather than having it described with words? These basic questions about the na- ture of intelligence have been difficult to answer because we only had one example of an intelligent system – humans – and limited access to cases that isolated language or vision. How- ever, the development of sophisticated Vision-Language Mod- els (VLMs) by artificial intelligence researchers offers us new opportunities to explore the contributions that language and vi- sion make to learning about the world. We ablate components from the cognitive architecture of these models to identify their contributions to learning new tasks from limited data. We find that a language model leveraging all components recovers a majority of a VLM’s performance, despite its lack of visual in- put, and that language seems to allow this by providing access to prior knowledge and reasoning. 
    more » « less
    Free, publicly-accessible full text available July 24, 2025
  2. Language models are increasingly being deployed for general problem solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role. To surmount these challenges, we introduce a new framework for language model inference, “Tree of Thoughts” (ToT), which generalizes over the popular “Chain of Thought” approach to prompting language models, and enables exploration over coherent units of text (“thoughts”) that serve as intermediate steps toward problem solving. ToT allows LMs to perform deliberate decision making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices. Our experiments show that ToT significantly enhances language models’ problem-solving abilities on three novel tasks requiring non-trivial planning or search: Game of 24, Creative Writing, and Mini Crosswords. For instance, in Game of 24, while GPT-4 with chain-of-thought prompting only solved 4% of tasks, our method achieved a success rate of 74%. Code repo with all prompts: https://github.com/princeton-nlp/tree-of-thought-llm. 
    more » « less
  3. For human children as well as machine learning systems, a key challenge in learning a word is linking the word to the visual phenomena it describes. We explore this aspect of word learn- ing by using the performance of computer vision systems as a proxy for the difficulty of learning a word from visual cues. We show that the age at which children acquire different categories of words is correlated with the performance of visual classifi- cation and captioning systems, over and above the expected effects of word frequency. The performance of the computer vision systems is correlated with human judgments of the con- creteness of words, which are in turn a predictor of children’s word learning, suggesting that these models are capturing the relationship between words and visual phenomena. 
    more » « less
  4. As intelligent systems gain autonomy and capability, it becomes vital to ensure that their objectives match those of their human users; this is known as the value-alignment problem. In robotics, value alignment is key to the design of collaborative robots that can integrate into human workflows, successfully inferring and adapting to their users’ objectives as they go.We argue that a meaningful solution to value alignment must combine multi-agent decision theory with rich mathematical models of human cognition, enabling robots to tap into people’s natural collaborative capabilities. We present a solution to the cooperative inverse reinforcement learning (CIRL) dynamic game based on well-established cognitive models of decision making and theory of mind. The solution captures a key reciprocity relation: the human will not plan her actions in isolation, but rather reason pedagogically about how the robot might learn from them; the robot, in turn, can anticipate this and interpret the human’s actions pragmatically. To our knowledge, this work constitutes the first formal analysis of value alignment grounded in empirically validated cognitive models. 
    more » « less