skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pragmatic-Pedagogic Value Alignment
As intelligent systems gain autonomy and capability, it becomes vital to ensure that their objectives match those of their human users; this is known as the value-alignment problem. In robotics, value alignment is key to the design of collaborative robots that can integrate into human workflows, successfully inferring and adapting to their users’ objectives as they go.We argue that a meaningful solution to value alignment must combine multi-agent decision theory with rich mathematical models of human cognition, enabling robots to tap into people’s natural collaborative capabilities. We present a solution to the cooperative inverse reinforcement learning (CIRL) dynamic game based on well-established cognitive models of decision making and theory of mind. The solution captures a key reciprocity relation: the human will not plan her actions in isolation, but rather reason pedagogically about how the robot might learn from them; the robot, in turn, can anticipate this and interpret the human’s actions pragmatically. To our knowledge, this work constitutes the first formal analysis of value alignment grounded in empirically validated cognitive models.  more » « less
Award ID(s):
1734633
PAR ID:
10063837
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
International Symposium on Robotics Research (ISRR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems. 
    more » « less
  2. To enable sophisticated interactions between humans and robots in a shared environment, robots must infer the intentions and strategies of their human counterparts. This inference can provide a competitive edge to the robot or enhance human-robot collaboration by reducing the necessity for explicit communication about task decisions. In this work, we identify specific states within the shared environment, which we refer to as Critical Decision Points, where the actions of a human would be especially indicative of their high-level strategy. A robot can significantly reduce uncertainty regarding the human’s strategy by observing actions at these points. To demonstrate the practical value of Critical Decision Points, we propose a Receding Horizon Planning (RHP) approach for the robot to influence the movement of a human opponent in a competitive game of hide-and-seek in a partially observable setting. The human plays as the hider and the robot plays as the seeker. We show that the seeker can influence the hider to move towards Critical Decision Points, and this can facilitate a more accurate estimation of the hider’s strategy. In turn, this helps the seeker catch the hider faster than estimating the hider’s strategy whenever the hider is visible or when the seeker only optimizes for minimizing its distance to the hider. 
    more » « less
  3. Human-Robot Collaboration (HRC) aims to create environments where robots can understand workspace dynamics and actively assist humans in operations, with the human intention recognition being fundamental to efficient and safe task fulfillment. Language-based control and communication is a natural and convenient way to convey human intentions. However, traditional language models require instructions to be articulated following a rigid, predefined syntax, which can be unnatural, inefficient, and prone to errors. This paper investigates the reasoning abilities that emerged from the recent advancement of Large Language Models (LLMs) to overcome these limitations, allowing for human instructions to be used to enhance human-robot communication. For this purpose, a generic GPT 3.5 model has been fine-tuned to interpret and translate varied human instructions into essential attributes, such as task relevancy and tools and/or parts required for the task. These attributes are then fused with perceived on-going robot action to generate a sequence of relevant actions. The developed technique is evaluated in a case study where robots initially misinterpreted human actions and picked up wrong tools and parts for assembly. It is shown that the fine-tuned LLM can effectively identify corrective actions across a diverse range of instructional human inputs, thereby enhancing the robustness of human-robot collaborative assembly for smart manufacturing. 
    more » « less
  4. null (Ed.)
    Robots have begun operating and collaborating with humans in industrial and social settings. This collaboration introduces challenges: the robot must plan while taking the human’s actions into account. In prior work, the problem was posed as a 2-player deterministic game, with a limited number of human moves. The limit on human moves is unintuitive, and in many settings determinism is undesirable. In this paper, we present a novel planning method for collaborative human-robot manipulation tasks via probabilistic synthesis. We introduce a probabilistic manipulation domain that captures the interaction by allowing for both robot and human actions with states that represent the configurations of the objects in the workspace. The task is specified using Linear Temporal Logic over finite traces (LTLf ). We then transform our manipulation domain into a Markov Decision Process (MDP) and synthesize an optimal policy to satisfy the specification on this MDP. We present two novel contributions: a formalization of probabilistic manipulation domains allowing us to apply existing techniques and a comparison of different encodings of these domains. Our framework is validated on a physical UR5 robot. 
    more » « less
  5. Rauterberg, Matthias (Ed.)
    In modern society, robots have been increasingly involved in human lives in various scenarios. As a future society with human-robot interaction is approaching, it is important to consider how to develop robots that give positive impressions for a variety of users. Based on an Affective Engineering approach, affective values can strengthen the impact of the first impressions of products. Kawaiiness is one affective value that can be a key factor in developing robots with positive impressions. In this research, we carried out a collaborative project to design and develop kawaii robot prototypes in virtual spaces by American and Japanese university students. We then performed an experiment on affective evaluation of those robots using 10 adjectives: kawaii/cute, approachable, scary, trustworthy, cool, beautiful, polite, comfortable, and soft.We previously presented our statistical analysis results for the adjective “kawaii/cute.” However, the results of other adjectives, which potentially have effects on the robot impression, have not been presented yet. Therefore, in this paper, we present our further analysis of several adjectives to clarify their relationship with kawaii/cute and robot features across genders and cultures. In addition, we statistically analyzed the effects of robot pairs, adjectives, genders, and cultures. The results suggest that robots with features such as more animal-like, rounder, and shorter tend to increase positive impressions such as kawaii, approachability, beauty, comfortable, and softness. Also, we found no difference across gender and culture for the impressions on kawaii robots, which shows the possibility of expanding the concept of kawaii robots worldwide. 
    more » « less