skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grunow, Anne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. The use of stone hammers to produce sharp stone flakes—knapping—is thought to represent a significant stage in hominin technological evolution because it facilitated the exploitation of novel resources, including meat obtained from medium‐to‐large‐sized vertebrates. The invention of knapping may have occurred via an additive (i.e., cumulative) process that combined several innovative stages. Here, we propose that one of these stages was the hominin use of ‘naturaliths,’ which we define as naturally produced sharp stone fragments that could be used as cutting tools. Based on a review of the literature and our own research, we first suggest that the ‘typical’ view, namely that sharp‐edged stones are seldom produced by nonprimate processes, is likely incorrect. Instead, naturaliths can be, and are being, endlessly produced in a wide range of settings and thus may occur on the landscape in far greater numbers than archaeologists currently understand or acknowledge. We then explore the potential role this ‘naturalith prevalence’ may have played in the origin of hominin stone knapping. Our hypothesis suggests that the origin of knapping was not a ‘Eureka!’ moment whereby hominins first made a sharp flake by intention or by accident and then sought something to cut, but instead was an emulative process by hominins aiming to reproduce the sharp tools furnished by mother nature and already in demand. We conclude with a discussion of several corollaries our proposal prompts, and several avenues of future research that can support or question our proposal. 
    more » « less
    Free, publicly-accessible full text available March 15, 2026
  3. Changes in magmatism and sedimentation along the late Neoproterozoic-early Paleozoic Ross orogenic belt in Antarctica have been linked to the cessation of convergence along the Mozambique belt during the assembly of East-West Gondwana. However, these interpretations are non-unique and are based, in part, on limited thermochronological data sets spread out along large sectors of the East Antarctic margin. We report new 40Ar/39Ar hornblende, muscovite, and biotite age data for plutonic (n = 13) and metasedimentary (n = 3) samples from the Shackleton–Liv Glacier sector of the Queen Maud Mountains in Antarctica. Cumulative 40Ar/39Ar age data show polymodal age peaks (510 Ma, 491 Ma, 475 Ma) that lag peaks in U-Pb igneous crystallization ages, suggesting igneous and metamorphic cooling following magmatism within the region. The 40Ar/39Ar ages are similar to ages in other sectors of the Ross orogen, but younger than detrital mineral 40Ar/39Ar cooling ages indicative of older magmatism and cooling of unexposed inboard areas along the margin. Detrital zircon trace element abundances suggest that the widespread onset of magmatism in outboard localities of the orogen correlates with a ~560–530 Ma decrease in crustal thickness. The timing of crustal thinning recorded by zircon in magmas overlaps with other evidence for the timing of crustal extension, suggesting that the regional onset of magmatism with subsequent igneous and metamorphic cooling probably reflects slab rollback that coincided with possible global plate motion changes induced during the final assembly of Gondwana. 
    more » « less
  4. Lithic technologies dominate understanding of early humans, yet natural processes can fracture rock in ways that resemble artefacts made by Homo sapiens and other primates. Differentiating between fractures made by natural processes and primates is important for assessing the validity of early and controversial archaeological sites. Rather than depend on expert authority or intuition, the authors propose a null model of conchoidally fractured Antarctic rocks. As no primates have ever occupied the continent, Antarctica offers a laboratory for generating samples that could only have been naturally fractured. Examples that resemble artefacts produced by primates illustrate the potential of ‘archaeological’ research in Antarctica for the evaluation of hominin sites worldwide. 
    more » « less
  5. Periods of cessation, resumption and enhanced arc activity are recorded in the Cretaceous igneous rocks of the Antarctic Peninsula. We present new geochronological (laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb) analyses of 36 intrusive and volcanic Cretaceous rocks, along with LA-ICP-MS apatite U–Pb analyses (a medium-temperature thermochronometer) of 28 Triassic–Cretaceous igneous rocks of the Antarctic Peninsula. These are complemented by new zircon Hf isotope data along with whole-rock geochemistry and isotope (Nd, Sr and Pb) data. Our results indicate that the Cretaceous igneous rocks of the Antarctic Peninsula have geochemical signatures consistent with a continental arc setting and were formed during the interval c. 140–79 Ma, whereas the main peak of magmatism occurred during c. 118–110 Ma. Trends in ε Hf t (zircon) combined with elevated heat flow that remagnetized rocks and reset apatite U–Pb ages suggest that Cretaceous magmatism formed within a prevailing extensional setting that was punctuated by periods of compression. A noteworthy compressive period probably occurred during c. 147–128 Ma, triggered by the westward migration of South America during opening of the South Atlantic Ocean. Cretaceous arc rocks that crystallized during c. 140–100 Ma define a belt that extends from southeastern Palmer Land to the west coast of Graham Land. This geographical distribution could be explained by (1) a flat slab with east-dipping subduction of the Phoenix Plate, or (2) west-dipping subduction of the lithosphere of the Weddell Sea, or (3) an allochthonous origin for the rocks of Alexander Island. A better understanding of the geological history of the pre-Cretaceous rocks of Alexander Island and the inaccessible area of the southern Weddell Sea is required. Supplementary material: A description of the methods used in this study and the complete dataset are available at https://doi.org/10.6084/m9.figshare.c.6089274 
    more » « less
  6. null (Ed.)
  7. The Ross orogenic belt in Antarctica is one of several Neoproterozoic-early Palaeozoic orogens that crisscrossed Gondwana and are associated with Gondwana’s assembly. We present new age data from the Queen Maud Mountains, Ross orogen, from areas that hitherto have lacked precise ages from the local plutonic rocks. The zircon U-Pb igneous crystallization ages (n = 7) and a hornblende 40Ar/39Ar cooling age (n = 1) constrain plutonism to primarily lie within the Cambrian to Ordovician. Cumulative zircon U-Pb crystallization age data yield polymodal age distributions (516 Ma, 506–502 Ma, and 488 Ma age peaks) that are similar to other areas of the Queen Maud-Horlick Mountains, consistent with regional magmatic flare-ups along the Pacific-Gondwana margin during these times. The ages of deformed plutons constrain deformation to the Cambrian (Series 2) to Ordovician (Lower), with some regions indicating a transition to post-tectonic magmatism and cooling at ~509-470 Ma. Collectively, the data indicate that the Queen Maud-Horlick Mountains share a similar petrotectonic history with other regions of the Pacific-Gondwana margin, providing new evidence that this tectonostratigraphic province is part of and not exotic to the larger igneous-sedimentary successions developed in the peri-Gondwana realm under a broadly convergent margin setting. 
    more » « less