skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cretaceous magmatism in the Antarctic Peninsula and its tectonic implications
Periods of cessation, resumption and enhanced arc activity are recorded in the Cretaceous igneous rocks of the Antarctic Peninsula. We present new geochronological (laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb) analyses of 36 intrusive and volcanic Cretaceous rocks, along with LA-ICP-MS apatite U–Pb analyses (a medium-temperature thermochronometer) of 28 Triassic–Cretaceous igneous rocks of the Antarctic Peninsula. These are complemented by new zircon Hf isotope data along with whole-rock geochemistry and isotope (Nd, Sr and Pb) data. Our results indicate that the Cretaceous igneous rocks of the Antarctic Peninsula have geochemical signatures consistent with a continental arc setting and were formed during the interval c. 140–79 Ma, whereas the main peak of magmatism occurred during c. 118–110 Ma. Trends in ε Hf t (zircon) combined with elevated heat flow that remagnetized rocks and reset apatite U–Pb ages suggest that Cretaceous magmatism formed within a prevailing extensional setting that was punctuated by periods of compression. A noteworthy compressive period probably occurred during c. 147–128 Ma, triggered by the westward migration of South America during opening of the South Atlantic Ocean. Cretaceous arc rocks that crystallized during c. 140–100 Ma define a belt that extends from southeastern Palmer Land to the west coast of Graham Land. This geographical distribution could be explained by (1) a flat slab with east-dipping subduction of the Phoenix Plate, or (2) west-dipping subduction of the lithosphere of the Weddell Sea, or (3) an allochthonous origin for the rocks of Alexander Island. A better understanding of the geological history of the pre-Cretaceous rocks of Alexander Island and the inaccessible area of the southern Weddell Sea is required. Supplementary material: A description of the methods used in this study and the complete dataset are available at https://doi.org/10.6084/m9.figshare.c.6089274  more » « less
Award ID(s):
2137467 1643713
PAR ID:
10384562
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the Geological Society
Volume:
180
Issue:
1
ISSN:
0016-7649
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Southern California batholith contains a geologic record that can help clarify the timing of events that occurred during the Late Cretaceous (100-65 Ma) along the western margin of the North American Cordillera. The subduction of the oceanic conjugate Shatsky plateau beneath North America is postulated to have ended active magmatism in the arc at 88-70 Ma; however, the timing of this event is poorly constrained in Southern California. We use U-Pb laser ablation zircon petrochronology to document the timing and conditions of magmatism and metamorphism in the lower crust of the Cretaceous arc. We focus on the Cucamonga terrane in a part of the Southern California batholith located northeast of Los Angeles in the southeastern San Gabriel Mountains. These rocks contain exhumed lower crustal (7-9 kbar) rocks predominantly composed of granulite-facies metasedimentary rocks, migmatites, charnockite and dioritic to tonalitic gneiss. We report 20 new zircon dates from 11 samples, including 4 mafic biotite gneisses, 3 mylonitic tonalites, 2 charnockites, a quartzite, and a felsic pegmatite dike crosscutting granulite-facies metasedimentary rocks. New 206Pb/238U ages show that magmatism occurred in the Middle Jurassic (ca. 172-166 Ma), the Early Cretaceous (ca. 120-118 Ma), and the Late Cretaceous (88-86 Ma) at temperatures ranging from 740 to 800 oC. Granulite-facies metamorphism and partial melting of these rocks occurred during the 88-74 Ma interval at temperatures ranging from 730°C to 800oC. Our data indicate that high-temperature arc magmatism and granulite-facies metamorphism continued through the Late Cretaceous and overlapped in timing with postulated subduction of the conjugate Shatsky plateau from previous models. We speculate that termination of arc activity and cooling of the lower crust in response to plateau subduction must postdate ca. 74 Ma. 
    more » « less
  2. null (Ed.)
    Abstract The spatial and temporal distribution of arc magmatism and associated isotopic variations provide insights into the Phanerozoic history of the western margin of South America during major shifts in Andean and pre-Andean plate interactions. We integrated detrital zircon U-Th-Pb and Hf isotopic results across continental magmatic arc systems of Chile and western Argentina (28°S–33°S) with igneous bedrock geochronologic and zircon Hf isotope results to define isotopic signatures linked to changes in continental margin processes. Key tectonic phases included: Paleozoic terrane accretion and Carboniferous subduction initiation during Gondwanide orogenesis, Permian–Triassic extensional collapse, Jurassic–Paleogene continental arc magmatism, and Neogene flat slab subduction during Andean shortening. The ~550 m.y. record of magmatic activity records spatial trends in magma composition associated with terrane boundaries. East of 69°W, radiogenic isotopic signatures indicate reworked continental lithosphere with enriched (evolved) εHf values and low (<0.65) zircon Th/U ratios during phases of early Paleozoic and Miocene shortening and lithospheric thickening. In contrast, the magmatic record west of 69°W displays depleted (juvenile) εHf values and high (>0.7) zircon Th/U values consistent with increased asthenospheric contributions during lithospheric thinning. Spatial constraints on Mesozoic to Cenozoic arc width provide a rough approximation of relative subduction angle, such that an increase in arc width reflects shallower slab dip. Comparisons among slab dip calculations with time-averaged εHf and Th/U zircon results exhibit a clear trend of decreasing (enriched) magma compositions with increasing arc width and decreasing slab dip. Collectively, these data sets demonstrate the influence of subduction angle on the position of upper-plate magmatism (including inboard arc advance and outboard arc retreat), changes in isotopic signatures, and overall composition of crustal and mantle material along the western edge of South America. 
    more » « less
  3. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks with geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates. 
    more » « less
  4. Abstract We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, an ~500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada Batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate (1) the timing and rates of Mesozoic arc construction, (2) mechanisms of sediment incorporation into the lower crust, and (3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use U-Pb detrital zircon geochronology of four quartzites and one metatexite migmatite to investigate the origin of the lower-crustal Cucamonga metasedimentary sequence, and U-Pb zircon petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga metasedimentary sequence shares broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a late Paleozoic to early Mesozoic forearc or intra-arc basin marginal to the Southern California Batholith. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750 °C), metamorphic events at ca. 124 Ma and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 Ma to 75 Ma and culminated in a magmatic surge from ca. 90 Ma to 75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by the emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event. 
    more » « less
  5. Abstract Lower crustal xenoliths from the Missouri Breaks diatremes and Bearpaw Mountains volcanic field in Montana record a multi-billion-year geologic history lasting from the Neoarchean to the Cenozoic. Unusual kyanite-scapolite-bearing mafic granulites equilibrated at approximately 1.8 GPa and 890 °C and 2.3 GPa and 1000 °C (67 and 85 km depth) and have compositions pointing to their origin as arc cumulates, while metapelitic granulites record peak conditions of 1.3 GPa and 775 °C (48 km depth). Rutile from both mafic granulites and metapelites have U-Pb dates that document the eruption of the host rocks at ca. 46 Ma (Big Slide in the Missouri Breaks) and ca. 51 Ma (Robinson Ranch in the Bearpaw Mountains). Detrital igneous zircon in metapelites date back to the Archean, and metamorphic zircon and monazite record a major event beginning at 1800 Ma. Both zircon and monazite from a metapelite from Robinson Ranch also document an earlier metamorphic event at 2200–2000 Ma, likely related to burial/metamorphism in a rift setting. Metapelites from Big Slide show a clear transition from detrital igneous zircon accumulation to metamorphic zircon and monazite growth around 1800 Ma, recording arc magmatism and subsequent continent-continent collision during the Great Falls orogeny, supporting suggestions that the Great Falls tectonic zone is a suture between the Wyoming craton and Medicine Hat block. U-Th-Pb and trace-element depth profiles of zircon and monazite record metasomatism of the lower crust during the Laramide orogeny at ~60 Ma, bolstering recent research pointing to Farallon slab fluid infiltration during the orogeny. 
    more » « less