skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gunby, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A family of sets is said to be an antichain if for all distinct , and it is said to be a distance‐ code if every pair of distinct elements of has Hamming distance at least . Here, we prove that if is both an antichain and a distance‐ code, then . This result, which is best‐possible up to the implied constant, is a purely combinatorial strengthening of a number of results in Littlewood–Offord theory; for example, our result gives a short combinatorial proof of Hálasz's theorem, while all previously known proofs of this result are Fourier‐analytic.

     
    more » « less
  2. Abstract

    We elucidate the relationship between the threshold and the expectation‐threshold of a down‐set. Qualitatively, our main result demonstrates that there exist down‐sets with polynomial gaps between their thresholds and expectation‐thresholds; in particular, the logarithmic gap predictions of Kahn–Kalai and Talagrand (recently proved by Park–Pham and Frankston–Kahn–Narayanan–Park) about up‐sets do not apply to down‐sets. Quantitatively, we show that any collection of graphs on that covers the family of all triangle‐free graphs on satisfies the inequality for some universal , and this is essentially best‐possible.

     
    more » « less