skip to main content


Search for: All records

Creators/Authors contains: "Guo, Rongkai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cybersickness in Virtual Reality (VR) is a serious issue affecting the overall experience. Many research papers have investigated the causes of cybersickness and offered potential solutions for reducing cybersickness. In this paper, we demonstrate a method to reduce cybersickness by using a novel rendering technique in the virtual environment (VE)- Dynamic Mono-Stereoscopic Rendering System (DMSRS). The DMSRS system uses two different cameras to create a hybrid rendering that includes monoscopic and stereoscopic systems. By default, VEs are rendered using stereoscopic or monoscopic rendering exclusively. The results indicate that cybersickness decreased amongst users with little to no VR experience hindered when using the DMSRS. 
    more » « less
  2. The objective of this research is to compare the effectiveness of different tracking devices underwater. There have been few works in aquatic virtual reality (VR) - i.e., VR systems that can be used in a real underwater environment. Moreover, the works that have been done have noted limitations on tracking accuracy. Our initial test results suggest that inertial measurement units work well underwater for orientation tracking but a different approach is needed for position tracking. Towards this goal, we have waterproofed and evaluated several consumer tracking systems intended for gaming to determine the most effective approaches. First, we informally tested infrared systems and fiducial marker based systems, which demonstrated significant limitations of optical approaches. Next, we quantitatively compared inertial measurement units (IMU) and a magnetic tracking system both above water (as a baseline) and underwater. By comparing the devices rotation data, we have discovered that the magnetic tracking system implemented by the Razer Hydra is more accurate underwater as compared to a phone-based IMU. This suggests that magnetic tracking systems should be further explored for underwater VR applications. 
    more » « less