Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY Evidence of seismic anisotropy is widespread within the Earth, including from individual crystals, rocks, borehole measurements, active-source seismic data, and global seismic data. The seismic anisotropy of a material determines how wave speeds vary as a function of propagation direction and polarization, and it is characterized by density and the elastic map, which relates strain and stress in the material. Associated with the elastic map is a symmetric $$6 \times 6$$ matrix, which therefore has 21 parameters. The 21-D space of elastic maps is vast and poses challenges for both theoretical analysis and typical inverse problems. Most estimation approaches using a given set of directional wave speed measurements assume a high-symmetry approximation, typically either in the form of isotropy (2 parameters), vertical transverse isotropy (radial anisotropy: 5 parameters), or horizontal transverse isotropy (azimuthal anisotropy: 6 parameters). We offer a general approach to explore the space of elastic maps by starting with a given elastic map $$\mathbf {T}$$. Using a combined minimization and projection procedure, we calculate the closest $$\Sigma$$-maps to $$\mathbf {T}$$, where $$\Sigma$$ is one of the eight elastic symmetry classes: isotropic, cubic, transverse isotropic, trigonal, tetragonal, orthorhombic, monoclinic and trivial. We apply this approach to 21-parameter elastic maps derived from laboratory measurements of minerals; the measurements include dependencies on pressure, temperature, and composition. We also examine global elasticity models derived from subduction flow modelling. Our approach offers a different perspective on seismic anisotropy and motivates new interpretations, such as for why elasticity varies as a function of pressure, temperature, and composition. The two primary advances of this study are (1) to provide visualization of elastic maps, including along specific pathways through the space of model parameters, and (2) to offer distinct options for reducing the complexity of a given elastic map by providing a higher-symmetry approximation or a lower-anisotropic version. This could contribute to improved imaging and interpretation of Earth structure and dynamics from seismic anisotropy.more » « less
-
Fluorescence is a remarkable property exhibited by many chemical compounds and biomolecules. Fluorescence has revolutionized analytical and biomedical sciences due to its wide-ranging applications in analytical and diagnostic tools of biological and environmental importance. Fluorescent molecules are frequently employed in drug delivery, optical sensing, cellular imaging, and biomarker discovery. Cancer is a global challenge and fluorescence agents can function as diagnostic as well as monitoring tools, both during early tumor progression and treatment monitoring. Many fluorescent compounds can be found in their natural form, but recent developments in synthetic chemistry and molecular biology have allowed us to synthesize and tune fluorescent molecules that would not otherwise exist in nature. Naturally derived fluorescent compounds are generally more biocompatible and environmentally friendly. They can also be modified in cost-effective and target-specific ways with the help of synthetic tools. Understanding their unique chemical structures and photophysical properties is key to harnessing their full potential in biomedical and analytical research. As drug discovery efforts require the rigorous characterization of pharmacokinetics and pharmacodynamics, fluorescence-based detection accelerates the understanding of drug interactions via in vitro and in vivo assays. Herein, we provide a review of natural products and synthetic analogs that exhibit fluorescence properties and can be used as probes, detailing their photophysical properties. We have also provided some insights into the relationships between chemical structures and fluorescent properties. Finally, we have discussed the applications of fluorescent compounds in biomedical science, mainly in the study of tumor and cancer cells and analytical research, highlighting their pivotal role in advancing drug delivery, biomarkers, cell imaging, biosensing technologies, and as targeting ligands in the diagnosis of tumors.more » « less
-
A power take-off based on the inerter pendulum vibration absorber (called IPVA-PTO) is integrated with a spar-floater system to study its hydrodynamic response suppression and wave energy conversion capabilities in regular waves. The hydrodynamics of the spar-floater system is computed using the boundary element method with linear wave theory. With the wave height and wave frequency as the bifurcation parameters, it is found that the system can undergo two bifurcations: period-doubling bifurcation around the first resonance frequency (spar mode) and secondary Hopf bifurcation around the second resonance frequency (floater mode). The period-doubling bifurcation results in an energy transfer between the spar-floater system and the IPVA-PTO for small electrical damping values. As a result, the IPVA-PTO system simultaneously reduces the maximum response amplitude operator (RAO) of the spar and increases the normalized capture width in comparison with the optimal linear benchmark. Experiments performed on a ‘‘dry’’ single-degree-of-freedom system integrated with the IPVAPTO where the base excitation is substituted for the wave excitation verify the simultaneous performance enhancement due to the period-doubling bifurcation. The system performance beyond the period-doubling bifurcation is also experimentally investigated. On the other hand, as the wave height approaches and passes the secondary Hopf bifurcation, the pendulum responses transition from primary harmonic responses to quasi-periodic responses to rotations. When the rotations occur, the IPVA-PTO system increases the maximum normalized capture width threefold to fivefold compared with the optimal linear benchmark, yet slightly increases the RAO around the second resonance frequency. Nevertheless, the RAO remains smaller than the global maximum RAO of the optimal linear benchmark. Finally, parametric studies are performed to study the effects of parameters on the bifurcations. It is observed that by varying the electrical damping, the wave height required for achieving the period-doubling bifurcation can be changed significantly, which can be exploited to stabilize the spar.more » « less
-
Simultaneous tracking of ultrafast surface and gas-phase dynamics in solid–gas interfacial reactionsReal-time detection of intermediate species and final products at the surface and near-surface in interfacial solid–gas reactions is critical for an accurate understanding of heterogeneous reaction mechanisms. In this article, an experimental method that can simultaneously monitor the ultrafast dynamics at the surface and above the surface in photoinduced heterogeneous reactions is presented. This method relies on a combination of mass spectrometry and femtosecond pump–probe spectroscopy. As a model system, the photoinduced reaction of methyl iodide on and above a cerium oxide surface is investigated. The species that are simultaneously detected from the surface and gas-phase present distinct features in the mass spectra, such as a sharp peak followed by an adjacent broad shoulder. The sharp peak is attributed to the species detected from the surface, while the broad shoulder is due to the detection of gas-phase species above the surface, as confirmed by multiple experiments. By monitoring the evolution of the sharp peak and broad shoulder as a function of the pump–probe time delay, transient signals are obtained that describe the ultrafast photoinduced reaction dynamics of methyl iodide on the surface and in the gas-phase. Finally, SimION simulations are performed to confirm the origin of the ions produced on the surface and in the gas-phase.more » « less
-
Abstract With the rise of data volume and computing power, seismological research requires more advanced skills in data processing, numerical methods, and parallel computing. We present the experience of conducting training workshops in various forms of delivery to support the adoption of large-scale high-performance computing (HPC) and cloud computing, advancing seismological research. The seismological foci were on earthquake source parameter estimation in catalogs, forward and adjoint wavefield simulations in 2D and 3D at local, regional, and global scales, earthquake dynamics, ambient noise seismology, and machine learning. This contribution describes the series of workshops delivered as part of research projects, the learning outcomes for participants, and lessons learned by the instructors. Our curriculum was grounded on open and reproducible science, large-scale scientific computing and data mining, and computing infrastructure (access and usage) for HPC and the cloud. We also describe the types of teaching materials that have proven beneficial to the instruction and the sustainability of the program. We propose guidelines to deliver future workshops on these topics.more » « lessFree, publicly-accessible full text available June 5, 2026
-
Abstract Zinc oxide nanoparticles (ZnO NPs) are versatile and promising, with diverse applications in environmental remediation, nanomedicine, cancer treatment, and drug delivery. In this study, ZnO NPs were synthesized utilizing extracts derived fromAcacia catechu, Artemisia vulgaris, andCynodon dactylon. The synthesized ZnO NPs showed an Ultraviolet–visible spectrum at 370 nm, and X-ray diffraction analysis indicated the hexagonal wurtzite framework with the average crystallite size of 15.07 nm, 16.98 nm, and 18.97 nm for nanoparticles synthesized utilizingA. catechu, A. vulgaris,andC. dactylonrespectively. Scanning electron microscopy (SEM) demonstrated spherical surface morphology with average diameters of 18.5 nm, 17.82 nm, and 17.83 nm for ZnO NPs prepared fromA. catechu, A. vulgaris, andC. dactylon,respectively. Furthermore, ZnO NPs tested againstStaphylococcus aureus, Kocuria rhizophila, Klebsiella pneumonia,andShigella sonneidemonstrated a zone of inhibition of 8 to 14 mm. The cell viability and cytotoxicity effects of ZnO NPs were studied on NIH-3T3 mouse fibroblast cells treated with different concentrations (5 μg/mL, 10 μg/mL, and 50 μg/mL). The results showed biocompatibility of all samples, except with higher doses causing cell death. In conclusion, the ZnO NPs synthesized through plant-mediated technique showed promise for potential utilization in various biomedical applications in the future.more » « less
-
Simultaneous tracking of ultrafast surface and gas-phase dynamics in solid-gas interfacial reactionsReal-time detection of intermediate species and final products at the surface and near-surface in interfacial solid-gas reactions is critical for an accurate understanding of heterogeneous reaction mechanisms. In this contribution, an experimental method that can simultaneously monitor the ultrafast dynamics at the surface and above the surface in photoinduced heterogeneous reactions is presented. The method relies on a combination of mass spectrometry and femtosecond pump-probe spectroscopy. As a model system, the photoinduced reaction of methyl iodide on and above a cerium oxide surface is investigated. The species that are simultaneously detected from the surface and gas-phase present distinct features in the mass spectra, such as a sharp peak followed by an adjacent broad shoulder. The sharp peak is attributed to the species detected from the surface while the broad shoulder is due to the detection of gas-phase species above the surface, as confirmed by multiple experiments. By monitoring the evolution of the sharp peak and broad shoulder as a function of the pump-probe time delay, transient signals are obtained that describe the ultrafast photoinduced reaction dynamics of methyl iodide on the surface and in gas-phase. Finally, SimION simulations are performed to confirm the origin of the ions produced on the surface and gas-phase.more » « less
-
Abstract The inerter pendulum vibration absorber is connected with a power take-off mechanism (called IPVA-PTO) to study its wave energy conversion potential. The resulting IPVA-PTO system is integrated between a spar and a floater (torus) using a ballscrew mechanism. The hydrodynamic stiffness, added mass and radiation damping effects on the spar-floater system are characterized using boundary element method via Ansys Aqwa. It has been observed that a 1:2 internal resonance between the spar-floater system and the pendulum is responsible for nonlinear energy transfer between the two systems. This nonlinear energy transfer occurs when the primary harmonic solution of the system becomes unstable, and a secondary solution emerges in the system characterized by harmonics of frequency half the excitation frequency. As a result of this energy transfer, the vibration of the spar-floater system is suppressed, and the energy is transferred to the pendulum. The focus of this paper is to analyze this 1:2 internal resonance phenomenon near the resonant frequency of the spar. The IPVA-PTO system, when integrated with the spar-floater system, is compared to a linear coupling between the spar and the floater in terms of the response amplitude operator (RAO) of the spar and the energy conversion capability defined by the capture width of the energy converter.more » « less
-
Abstract The inerter pendulum vibration absorber (IPVA) is integrated between a spar and an annulus floater using a ball-screw mechanism to study its wave energy conversion potential. Hydrodynamic stiffness, added mass, and radiation damping effects on the spar-floater system are characterized using the boundary element method. It is found that a 1:2 internal resonance via a period-doubling bifurcation in the system is responsible for nonlinear energy transfer between the spar-floater system and the pendulum vibration absorber. This nonlinear energy transfer occurs when the primary harmonic solution of the system becomes unstable due to the 1:2 internal resonance phenomenon. The focus of this paper is to analyze this 1:2 internal resonance phenomenon near the first natural frequency of the system. The IPVA system when integrated with the spar-floater system is shown to outperform a linear coupling between the spar and the floater both in terms of the response amplitude operator (RAO) of the spar and one measure of the energy conversion potential of the system. Finally, experiments are performed on the IPVA system integrated with single-degree-of-freedom system (without any hydrodynamic effects) to observe the 1:2 internal resonance phenomenon and the nonlinear energy transfer between the primary mass and the pendulum vibration absorber. It is shown experimentally that the IPVA system outperforms a linear benchmark in terms of vibration suppression due to the energy transfer phenomenon.more » « less
An official website of the United States government

Full Text Available