skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gupta, Anupam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 10, 2025
  2. Adaptivity in Stochastic Submodular Cover Solutions to stochastic optimization problems are typically sequential decision processes that make decisions one by one, waiting for (and using) the feedback from each decision. Whereas such “adaptive” solutions achieve the best objective, they can be very time-consuming because of the need to wait for feedback after each decision. A natural question is are there solutions that only adapt (i.e., wait for feedback) a few times whereas still being competitive with the fully adaptive optimal solution? In “The Power of Adaptivity for Stochastic Submodular Cover,” Ghuge, Gupta, and Nagarajan resolve this question in the context of stochastic submodular cover, which is a fundamental stochastic covering problem. They provide algorithms that achieve a smooth trade-off between the number of adaptive “rounds” and the solution quality. The authors also demonstrate via experiments on real-world and synthetic data sets that, even for problems with more than 1,000 decisions, about six rounds of adaptivity suffice to obtain solutions nearly as good as fully adaptive solutions. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. Free, publicly-accessible full text available May 22, 2025
  4. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    We initiate the study of centralized algorithms for welfare-maximizing allocation of goods to buyers subject to average-value constraints. We show that this problem is NP-hard to approximate beyond a factor of e/(e-1), and provide a 4e/(e-1)-approximate offline algorithm. For the online setting, we show that no non-trivial approximations are achievable under adversarial arrivals. Under i.i.d. arrivals, we present a polytime online algorithm that provides a constant approximation of the optimal (computationally-unbounded) online algorithm. In contrast, we show that no constant approximation of the ex-post optimum is achievable by an online algorithm. 
    more » « less
  5. Megow, Nicole; Smith, Adam (Ed.)
    In this paper, we study the weighted k-server problem on the uniform metric in both the offline and online settings. We start with the offline setting. In contrast to the (unweighted) k-server problem which has a polynomial-time solution using min-cost flows, there are strong computational lower bounds for the weighted k-server problem, even on the uniform metric. Specifically, we show that assuming the unique games conjecture, there are no polynomial-time algorithms with a sub-polynomial approximation factor, even if we use c-resource augmentation for c < 2. Furthermore, if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap requires us to use at least 𝓁 resource augmentation, where 𝓁 is the number of distinct server weights. We complement these results by obtaining a constant-approximation algorithm via LP rounding, with a resource augmentation of (2+ε)𝓁 for any constant ε > 0. In the online setting, an exp(k) lower bound is known for the competitive ratio of any randomized algorithm for the weighted k-server problem on the uniform metric. In contrast, we show that 2𝓁-resource augmentation can bring the competitive ratio down by an exponential factor to only O(𝓁² log 𝓁). Our online algorithm uses the two-stage approach of first obtaining a fractional solution using the online primal-dual framework, and then rounding it online. 
    more » « less